Reinforcement Learning (RL) is an emerging approach to control many dynamical systems for which classical control approaches are not applicable or insufficient. However, the resultant policies may not generalize to variations in the parameters that the system may exhibit. This paper presents a powerful yet simple algorithm in which collaboration is facilitated between RL agents that are trained independently to perform the same task but with different system parameters. The independency among agents allows the exploitation of multi-core processing to perform parallel training. Two examples are provided to demonstrate the effectiveness of the proposed technique. The main demonstration is performed on a quadrotor with slung load tracking problem in a real-time experimental setup. It is shown that integrating the developed algorithm outperforms individual policies by reducing the RMSE tracking error. The robustness of the ensemble is also verified against wind disturbance.
We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.
This work presents an optimization method for the synthesis of finite state machines. The focus is on the reduction in the on-chip area and the cost of the circuit. A list of finite state machines from MCNC91 benchmark circuits have been evolved using Cartesian Genetic Programming. On the average, almost 30% of reduction in the total number of gates has been achieved. The effects of some parameters on the evolutionary process have also been discussed in the paper.
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space, or parameter transfer. To provide sufficient learning support, modern MTL uses annotated data with full, or sufficiently large overlap across tasks, i.e., each input sample is annotated for all, or most of the tasks. However, collecting such annotations is prohibitive in many real applications, and cannot benefit from datasets available for individual tasks. In this work, we challenge this setup and show that MTL can be successful with classification tasks with little, or non-overlapping annotations, or when there is big discrepancy in the size of labeled data per task. We explore task-relatedness for co-annotation and co-training, and propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching. To demonstrate the general applicability of our method, we conducted diverse case studies in the domains of affective computing, face recognition, species recognition, and shopping item classification using nine datasets. Our large-scale study of affective tasks for basic expression recognition and facial action unit detection illustrates that our approach is network agnostic and brings large performance improvements compared to the state-of-the-art in both tasks and across all studied databases. In all case studies, we show that co-training via task-relatedness is advantageous and prevents negative transfer (which occurs when MT model's performance is worse than that of at least one single-task model).
The real power of artificial intelligence appears in reinforcement learning, which is computationally and physically more sophisticated due to its dynamic nature. Rotation and injection are some of the proven ways in active flow control for drag reduction on blunt bodies. In this paper, rotation will be added to the cylinder alongside the deep reinforcement learning (DRL) algorithm, which uses multiple controlled jets to reach the maximum possible drag suppression. Characteristics of the DRL code, including controlling parameters, their limitations, and optimization of the DRL network for use with rotation will be presented. This work will focus on optimizing the number and positions of the jets, the sensors location, and the maximum allowed flow rate to jets in the form of the maximum allowed flow rate of each actuation and the total number of them per episode. It is found that combining the rotation and DRL is promising since it suppresses the vortex shedding, stabilizes the Karman vortex street, and reduces the drag coefficient by up to 49.75%. Also, it will be shown that having more sensors at more locations is not always a good choice and the sensor number and location should be determined based on the need of the user and corresponding configuration. Also, allowing the agent to have access to higher flow rates, mostly reduces the performance, except when the cylinder rotates. In all cases, the agent can keep the lift coefficient at a value near zero, or stabilize it at a smaller number.
Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.
Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.