For many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. For this reason, many researchers started developing behavior-based authentication systems. By collecting data in a moving vehicle, Deep Learning (DL) models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner's. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this paper, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the Controller Area Network (CAN) to inject suitably designed time-series data to mimic the legitimate driver. Our design of the malicious time series results from the combination of different Generative Adversarial Networks (GANs) and our study on the safety importance of the injected values during the attack. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 0.99. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes.
Driver distraction has become a significant cause of severe traffic accidents over the past decade. Despite the growing development of vision-driven driver monitoring systems, the lack of comprehensive perception datasets restricts road safety and traffic security. In this paper, we present an AssIstive Driving pErception dataset (AIDE) that considers context information both inside and outside the vehicle in naturalistic scenarios. AIDE facilitates holistic driver monitoring through three distinctive characteristics, including multi-view settings of driver and scene, multi-modal annotations of face, body, posture, and gesture, and four pragmatic task designs for driving understanding. To thoroughly explore AIDE, we provide experimental benchmarks on three kinds of baseline frameworks via extensive methods. Moreover, two fusion strategies are introduced to give new insights into learning effective multi-stream/modal representations. We also systematically investigate the importance and rationality of the key components in AIDE and benchmarks. The project link is //github.com/ydk122024/AIDE.
Autonomous collaborative networks of devices are rapidly emerging in numerous domains, such as self-driving cars, smart factories, critical infrastructure, and Internet of Things in general. Although autonomy and self-organization are highly desired properties, they increase vulnerability to attacks. Hence, autonomous networks need dependable mechanisms to detect malicious devices in order to prevent compromise of the entire network. However, current mechanisms to detect malicious devices either require a trusted central entity or scale poorly. In this paper, we present GrandDetAuto, the first scheme to identify malicious devices efficiently within large autonomous networks of collaborating entities. GrandDetAuto functions without relying on a central trusted entity, works reliably for very large networks of devices, and is adaptable to a wide range of application scenarios thanks to interchangeable components. Our scheme uses random elections to embed integrity validation schemes in distributed consensus, providing a solution supporting tens of thousands of devices. We implemented and evaluated a concrete instance of GrandDetAuto on a network of embedded devices and conducted large-scale network simulations with up to 100000 nodes. Our results show the effectiveness and efficiency of our scheme, revealing logarithmic growth in run-time and message complexity with increasing network size. Moreover, we provide an extensive evaluation of key parameters showing that GrandDetAuto is applicable to many scenarios with diverse requirements.
The problem of predicting driver attention from the driving perspective is gaining increasing research focus due to its remarkable significance for autonomous driving and assisted driving systems. The driving experience is extremely important for safe driving,a skilled driver is able to effortlessly predict oncoming danger (before it becomes salient) based on the driving experience and quickly pay attention to the corresponding zones.However, the nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods, and the current methods usually follow the technique line of saliency prediction methods to predict driver attention. In this paper, we propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure. By over-and-over iterations, FBLNet generates the incremental knowledge that carries rich historically-accumulative and long-term temporal information. The incremental knowledge in our model is like the driving experience of humans. Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention. Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.
As a way of addressing increasingly sophisticated problems, software professionals face the constant challenge of seeking improvement. However, for these individuals to enhance their skills, their process of studying and training must involve feedback that is both immediate and accurate. In the context of software companies, where the scale of professionals undergoing training is large, but the number of qualified professionals available for providing corrections is small, delivering effective feedback becomes even more challenging. To circumvent this challenge, this work presents an exploration of using Large Language Models (LLMs) to support the correction process of open-ended questions in technical training. In this study, we utilized ChatGPT to correct open-ended questions answered by 42 industry professionals on two topics. Evaluating the corrections and feedback provided by ChatGPT, we observed that it is capable of identifying semantic details in responses that other metrics cannot observe. Furthermore, we noticed that, in general, subject matter experts tended to agree with the corrections and feedback given by ChatGPT.
Simulation is an integral part in the process of developing autonomous vehicles and advantageous for training, validation, and verification of driving functions. Even though simulations come with a series of benefits compared to real-world experiments, various challenges still prevent virtual testing from entirely replacing physical test-drives. Our work provides an overview of these challenges with regard to different aspects and types of simulation and subsumes current trends to overcome them. We cover aspects around perception-, behavior- and content-realism as well as general hurdles in the domain of simulation. Among others, we observe a trend of data-driven, generative approaches and high-fidelity data synthesis to increasingly replace model-based simulation.
Following a leading vehicle is a daily but challenging task because it requires adapting to various traffic conditions and the leading vehicle's behaviors. However, the question `Does the following vehicle always actively react to the leading vehicle?' remains open. To seek the answer, we propose a novel metric to quantify the interaction intensity within the car-following pairs. The quantified interaction intensity enables us to recognize interactive and non-interactive car-following scenarios and derive corresponding policies for each scenario. Then, we develop an interaction-aware switching control framework with interactive and non-interactive policies, achieving a human-level car-following performance. The extensive simulations demonstrate that our interaction-aware switching control framework achieves improved control performance and data efficiency compared to the unified control strategies. Moreover, the experimental results reveal that human drivers would not always keep reacting to their leading vehicle but occasionally take safety-critical or intentional actions -- interaction matters but not always.
Autonomous driving technology is poised to transform transportation systems. However, achieving safe and accurate multi-task decision-making in complex scenarios, such as unsignalized intersections, remains a challenge for autonomous vehicles. This paper presents a novel approach to this issue with the development of a Multi-Task Decision-Making Generative Pre-trained Transformer (MTD-GPT) model. Leveraging the inherent strengths of reinforcement learning (RL) and the sophisticated sequence modeling capabilities of the Generative Pre-trained Transformer (GPT), the MTD-GPT model is designed to simultaneously manage multiple driving tasks, such as left turns, straight-ahead driving, and right turns at unsignalized intersections. We initially train a single-task RL expert model, sample expert data in the environment, and subsequently utilize a mixed multi-task dataset for offline GPT training. This approach abstracts the multi-task decision-making problem in autonomous driving as a sequence modeling task. The MTD-GPT model is trained and evaluated across several decision-making tasks, demonstrating performance that is either superior or comparable to that of state-of-the-art single-task decision-making models.
To effectively process data across a fleet of dynamic and distributed vehicles, it is crucial to implement resource provisioning techniques that provide reliable, cost-effective, and real-time computing services. This article explores resource provisioning for computation-intensive tasks over mobile vehicular clouds (MVCs). We use undirected weighted graphs (UWGs) to model both the execution of tasks and communication patterns among vehicles in a MVC. We then study low-latency and reliable scheduling of UWG asks through a novel methodology named double-plan-promoted isomorphic subgraph search and optimization (DISCO). In DISCO, two complementary plans are envisioned to ensure effective task completion: Plan A and Plan B.Plan A analyzes the past data to create an optimal mapping ($\alpha$) between tasks and the MVC in advance to the practical task scheduling. Plan B serves as a dependable backup, designed to find a feasible mapping ($\beta$) in case $\alpha$ fails during task scheduling due to unpredictable nature of the network.We delve into into DISCO's procedure and key factors that contribute to its success. Additionally, we provide a case study that includes comprehensive comparisons to demonstrate DISCO's exceptional performance in regards to time efficiency and overhead. We further discuss a series of open directions for future research.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.