Graph neural networks (GNNs) are becoming increasingly popular in the medical domain for the tasks of disease classification and outcome prediction. Since patient data is not readily available as a graph, most existing methods either manually define a patient graph, or learn a latent graph based on pairwise similarities between the patients. There are also hypergraph neural network (HGNN)-based methods that were introduced recently to exploit potential higher order associations between the patients by representing them as a hypergraph. In this work, we propose a patient hypergraph network (PHGN), which has been investigated in an inductive learning setup for binary outcome prediction in oropharyngeal cancer (OPC) patients using computed tomography (CT)-based radiomic features for the first time. Additionally, the proposed model was extended to perform time-to-event analyses, and compared with GNN and baseline linear models.
Optimal treatment rules can improve health outcomes on average by assigning a treatment associated with the most desirable outcome to each individual. Due to an unknown data generation mechanism, it is appealing to use flexible models to estimate these rules. However, such models often lead to complex and uninterpretable rules. In this article, we introduce an approach aimed at estimating optimal treatment rules that have higher accuracy, higher value, and lower loss from the same simple model family. We use a flexible model to estimate the optimal treatment rules and a simple model to derive interpretable treatment rules. We provide an extensible definition of interpretability and present a method that - given a class of simple models - can be used to select a preferred model. We conduct a simulation study to evaluate the performance of our approach compared to treatment rules obtained by fitting the same simple model directly to observed data. The results show that our approach has lower average loss, higher average outcome, and greater power in identifying individuals who can benefit from the treatment. We apply our approach to derive treatment rules of adjuvant chemotherapy in colon cancer patients using cancer registry data. The results show that our approach has the potential to improve treatment decisions.
Deep neural networks are increasingly utilized in mobility prediction tasks, yet their intricate internal workings pose challenges for interpretability, especially in comprehending how various aspects of mobility behavior affect predictions. In this study, we introduce a causal intervention framework to assess the impact of mobility-related factors on neural networks designed for next location prediction -- a task focusing on predicting the immediate next location of an individual. To achieve this, we employ individual mobility models to generate synthetic location visit sequences and control behavior dynamics by intervening in their data generation process. We evaluate the interventional location sequences using mobility metrics and input them into well-trained networks to analyze performance variations. The results demonstrate the effectiveness in producing location sequences with distinct mobility behaviors, thus facilitating the simulation of diverse spatial and temporal changes. These changes result in performance fluctuations in next location prediction networks, revealing impacts of critical mobility behavior factors, including sequential patterns in location transitions, proclivity for exploring new locations, and preferences in location choices at population and individual levels. The gained insights hold significant value for the real-world application of mobility prediction networks, and the framework is expected to promote the use of causal inference for enhancing the interpretability and robustness of neural networks in mobility applications.
Neurodegenerative diseases have a significant global impact affecting millions of individuals worldwide. Some of them, known as proteinopathies, are characterized by the accumulation and propagation of toxic proteins, known as prions. Alzheimer's and Parkinson's diseases are relevant of protheinopathies. Mathematical models of prion dynamics play a crucial role in understanding disease progression and could be of help to potential interventions. This article focuses on the heterodimer model: a system of two partial differential equations that describe the evolution of healthy and misfolded proteins. In particular, we propose a space discretization based on a Discontinuous Galerkin method on polygonal/polyhedral grids, which provides flexibility in handling meshes of complex brain geometries. Concerning the semi-discrete formulation we prove stability and a-priori error estimates. Next, we adopt a $\vartheta$-method scheme for time discretization. Some convergence tests are performed to confirm the theoretical bounds and the ability of the method to approximate travelling wave solutions. The proposed scheme is also tested to simulate the spread of $\alpha$-synuclein in a realistic test case of Parkinson's disease in a two-dimensional sagittal brain section geometry reconstructed from medical images.
The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge. This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg's model) and reasoning about knowledge mediated by other agents observing data (Wigner's friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.
Deep neural networks (DNNs) have become ubiquitous in addressing a number of problems, particularly in computer vision. However, DNN inference is computationally intensive, which can be prohibitive e.g. when considering edge devices. To solve this problem, a popular solution is DNN pruning, and more so structured pruning, where coherent computational blocks (e.g. channels for convolutional networks) are removed: as an exhaustive search of the space of pruned sub-models is intractable in practice, channels are typically removed iteratively based on an importance estimation heuristic. Recently, promising latency-aware pruning methods were proposed, where channels are removed until the network reaches a target budget of wall-clock latency pre-emptively estimated on specific hardware. In this paper, we present Archtree, a novel method for latency-driven structured pruning of DNNs. Archtree explores multiple candidate pruned sub-models in parallel in a tree-like fashion, allowing for a better exploration of the search space. Furthermore, it involves on-the-fly latency estimation on the target hardware, accounting for closer latencies as compared to the specified budget. Empirical results on several DNN architectures and target hardware show that Archtree better preserves the original model accuracy while better fitting the latency budget as compared to existing state-of-the-art methods.
Despite the increasing use of deep learning in medical image segmentation, acquiring sufficient training data remains a challenge in the medical field. In response, data augmentation techniques have been proposed; however, the generation of diverse and realistic medical images and their corresponding masks remains a difficult task, especially when working with insufficient training sets. To address these limitations, we present an end-to-end architecture based on the Hamiltonian Variational Autoencoder (HVAE). This approach yields an improved posterior distribution approximation compared to traditional Variational Autoencoders (VAE), resulting in higher image generation quality. Our method outperforms generative adversarial architectures under data-scarce conditions, showcasing enhancements in image quality and precise tumor mask synthesis. We conduct experiments on two publicly available datasets, MICCAI's Brain Tumor Segmentation Challenge (BRATS), and Head and Neck Tumor Segmentation Challenge (HECKTOR), demonstrating the effectiveness of our method on different medical imaging modalities.
Data collected by different modalities can provide a wealth of complementary information, such as hyperspectral image (HSI) to offer rich spectral-spatial properties, synthetic aperture radar (SAR) to provide structural information about the Earth's surface, and light detection and ranging (LiDAR) to cover altitude information about ground elevation. Therefore, a natural idea is to combine multimodal images for refined and accurate land-cover interpretation. Although many efforts have been attempted to achieve multi-source remote sensing image classification, there are still three issues as follows: 1) indiscriminate feature representation without sufficiently considering modal heterogeneity, 2) abundant features and complex computations associated with modeling long-range dependencies, and 3) overfitting phenomenon caused by sparsely labeled samples. To overcome the above barriers, a transformer-based heterogeneously salient graph representation (THSGR) approach is proposed in this paper. First, a multimodal heterogeneous graph encoder is presented to encode distinctively non-Euclidean structural features from heterogeneous data. Then, a self-attention-free multi-convolutional modulator is designed for effective and efficient long-term dependency modeling. Finally, a mean forward is put forward in order to avoid overfitting. Based on the above structures, the proposed model is able to break through modal gaps to obtain differentiated graph representation with competitive time cost, even for a small fraction of training samples. Experiments and analyses on three benchmark datasets with various state-of-the-art (SOTA) methods show the performance of the proposed approach.
The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge. This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg's model) and reasoning about knowledge mediated by other agents observing data (Wigner's friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.