亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Wi-Fi devices, akin to passive radars, can discern human activities within indoor settings due to the human body's interaction with electromagnetic signals. Current Wi-Fi sensing applications predominantly employ data-driven learning techniques to associate the fluctuations in the physical properties of the communication channel with the human activity causing them. However, these techniques often lack the desired flexibility and transparency. This paper introduces DeepProbHAR, a neuro-symbolic architecture for Wi-Fi sensing, providing initial evidence that Wi-Fi signals can differentiate between simple movements, such as leg or arm movements, which are integral to human activities like running or walking. The neuro-symbolic approach affords gathering such evidence without needing additional specialised data collection or labelling. The training of DeepProbHAR is facilitated by declarative domain knowledge obtained from a camera feed and by fusing signals from various antennas of the Wi-Fi receivers. DeepProbHAR achieves results comparable to the state-of-the-art in human activity recognition. Moreover, as a by-product of the learning process, DeepProbHAR generates specialised classifiers for simple movements that match the accuracy of models trained on finely labelled datasets, which would be particularly costly.

相關內容

Wi-Fi 是(shi) Wi-Fi 聯(lian)盟制(zhi)造商(shang)的商(shang)標(biao)可做為產品的品牌認(ren)證(zheng),是(shi)一個創(chuang)建于 IEEE 802.11 標(biao)準的無線局域網絡(luo)(WLAN)設備。

With respect to machine operation tasks, the experiences from different skill level operators, especially novices, can provide worthy understanding about the manner in which they perceive the operational environment and formulate knowledge to deal with various operation situations. In this study, we describe the operator's behaviors by utilizing the relations among their head, hand, and operation location (hotspot) during the operation. A total of 40 experiences associated with a sewing machine operation task performed by amateur operators was recorded via a head-mounted RGB-D camera. We examined important features of operational behaviors in different skill level operators and confirmed their correlation to the difficulties of the operation steps. The result shows that the pure-gazing behavior is significantly reduced when the operator's skill improved. Moreover, the hand-approaching duration and the frequency of attention movement before operation are strongly correlated to the operational difficulty in such machine operating environments.

The surge in connected devices in 6G with typical massive access scenarios, such as smart agriculture, and smart cities, poses significant challenges to unsustainable traditional communication with limited radio resources and already high system complexity. Fortunately, the booming artificial intelligence technology and the growing computational power of devices offer a promising 6G enabler: semantic communication (SemCom). However, existing deep learning-based SemCom paradigms struggle to extend to multi-user scenarios due to their rigid end-to-end training approach. Consequently, to truly empower 6G networks with this critical technology, this article rethinks generative SemCom for multi-user system with multi-modal large language model (MLLM), and propose a novel framework called "M2GSC". In this framework, the MLLM, which serves as shared knowledge base (SKB), plays three critical roles for complex tasks, spawning a series of benefits such as semantic encoding standardization and semantic decoding personalization. Meanwhile, to enhance the performance of M2GSC framework and to advance its implementation in 6G, we highlight three research directions on M2GSC framework, namely, upgrading SKB to closed loop agent, adaptive semantic encoding offloading, and streamlined semantic decoding offloading. Finally, a case study is conducted to demonstrate the preliminary validation on the effectiveness of the M2GSC framework in terms of streamlined decoding offloading.

To achieve dexterity comparable to that of humans, robots must intelligently process tactile sensor data. Taxel-based tactile signals often have low spatial-resolution, with non-standardized representations. In this paper, we propose a novel framework, HyperTaxel, for learning a geometrically-informed representation of taxel-based tactile signals to address challenges associated with their spatial resolution. We use this representation and a contrastive learning objective to encode and map sparse low-resolution taxel signals to high-resolution contact surfaces. To address the uncertainty inherent in these signals, we leverage joint probability distributions across multiple simultaneous contacts to improve taxel hyper-resolution. We evaluate our representation by comparing it with two baselines and present results that suggest our representation outperforms the baselines. Furthermore, we present qualitative results that demonstrate the learned representation captures the geometric features of the contact surface, such as flatness, curvature, and edges, and generalizes across different objects and sensor configurations. Moreover, we present results that suggest our representation improves the performance of various downstream tasks, such as surface classification, 6D in-hand pose estimation, and sim-to-real transfer.

Session-based recommendation systems aim to model users' interests based on their sequential interactions to predict the next item in an ongoing session. In this work, we present a novel approach that can be used in session-based recommendations (SBRs). Our goal is to enhance the prediction accuracy of an existing session-based recommendation model, the SR-GNN model, by introducing an adaptive weighting mechanism applied to the graph neural network (GNN) vectors. This mechanism is designed to incorporate various types of side information obtained through different methods during the study. Items are assigned varying degrees of importance within each session as a result of the weighting mechanism. We hypothesize that this adaptive weighting strategy will contribute to more accurate predictions and thus improve the overall performance of SBRs in different scenarios. The adaptive weighting strategy can be utilized to address the cold start problem in SBRs by dynamically adjusting the importance of items in each session, thus providing better recommendations in cold start situations, such as for new users or newly added items. Our experimental evaluations on the Dressipi dataset demonstrate the effectiveness of the proposed approach compared to traditional models in enhancing the user experience and highlighting its potential to optimize the recommendation results in real-world applications.

Despite the impressive performance on information-seeking tasks, large language models (LLMs) still struggle with hallucinations. Attributed LLMs, which augment generated text with in-line citations, have shown potential in mitigating hallucinations and improving verifiability. However, current approaches suffer from suboptimal citation quality due to their reliance on in-context learning. Furthermore, the practice of citing only coarse document identifiers makes it challenging for users to perform fine-grained verification. In this work, we introduce FRONT, a training framework designed to teach LLMs to generate Fine-Grained Grounded Citations. By grounding model outputs in fine-grained supporting quotes, these quotes guide the generation of grounded and consistent responses, not only improving citation quality but also facilitating fine-grained verification. Experiments on the ALCE benchmark demonstrate the efficacy of FRONT in generating superior grounded responses and highly supportive citations. With LLaMA-2-7B, the framework significantly outperforms all the baselines, achieving an average of 14.21% improvement in citation quality across all datasets, even surpassing ChatGPT.

As a crucial and intricate task in robotic minimally invasive surgery, reconstructing surgical scenes using stereo or monocular endoscopic video holds immense potential for clinical applications. NeRF-based techniques have recently garnered attention for the ability to reconstruct scenes implicitly. On the other hand, Gaussian splatting-based 3D-GS represents scenes explicitly using 3D Gaussians and projects them onto a 2D plane as a replacement for the complex volume rendering in NeRF. However, these methods face challenges regarding surgical scene reconstruction, such as slow inference, dynamic scenes, and surgical tool occlusion. This work explores and reviews state-of-the-art (SOTA) approaches, discussing their innovations and implementation principles. Furthermore, we replicate the models and conduct testing and evaluation on two datasets. The test results demonstrate that with advancements in these techniques, achieving real-time, high-quality reconstructions becomes feasible.

Dexterous telemanipulation is crucial in advancing human-robot systems, especially in tasks requiring precise and safe manipulation. However, it faces significant challenges due to the physical differences between human and robotic hands, the dynamic interaction with objects, and the indirect control and perception of the remote environment. Current approaches predominantly focus on mapping the human hand onto robotic counterparts to replicate motions, which exhibits a critical oversight: it often neglects the physical interaction with objects and relegates the interaction burden to the human to adapt and make laborious adjustments in response to the indirect and counter-intuitive observation of the remote environment. This work develops an End-Effects-Oriented Learning-based Dexterous Telemanipulation (EFOLD) framework to address telemanipulation tasks. EFOLD models telemanipulation as a Markov Game, introducing multiple end-effect features to interpret the human operator's commands during interaction with objects. These features are used by a Deep Reinforcement Learning policy to control the robot and reproduce such end effects. EFOLD was evaluated with real human subjects and two end-effect extraction methods for controlling a virtual Shadow Robot Hand in telemanipulation tasks. EFOLD achieved real-time control capability with low command following latency (delay<0.11s) and highly accurate tracking (MSE<0.084 rad).

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.

北京阿比特科技有限公司