Session-based recommendation systems aim to model users' interests based on their sequential interactions to predict the next item in an ongoing session. In this work, we present a novel approach that can be used in session-based recommendations (SBRs). Our goal is to enhance the prediction accuracy of an existing session-based recommendation model, the SR-GNN model, by introducing an adaptive weighting mechanism applied to the graph neural network (GNN) vectors. This mechanism is designed to incorporate various types of side information obtained through different methods during the study. Items are assigned varying degrees of importance within each session as a result of the weighting mechanism. We hypothesize that this adaptive weighting strategy will contribute to more accurate predictions and thus improve the overall performance of SBRs in different scenarios. The adaptive weighting strategy can be utilized to address the cold start problem in SBRs by dynamically adjusting the importance of items in each session, thus providing better recommendations in cold start situations, such as for new users or newly added items. Our experimental evaluations on the Dressipi dataset demonstrate the effectiveness of the proposed approach compared to traditional models in enhancing the user experience and highlighting its potential to optimize the recommendation results in real-world applications.
This work explores a multiple transmit antenna setting in a multi-access coded caching (MACC) network where each user accesses more than one cache. A MACC network has $K$ users and $K$ caches, and each user has access to $r < K$ consecutive caches in a cyclic wrap-around manner. There are $L$ antennas at the server, and each cache has a normalized size of $M/N \leq 1$. The cyclic wrap-around MACC network with a single antenna at the server has been a well-investigated topic, and several coded caching schemes and improved lower bounds on the performance are known for the same. However, this MACC network has not yet been studied under multi-antenna settings in the coded caching literature. We study the multi-antenna MACC problem and propose a solution for the same by constructing a pair of arrays called caching and delivery arrays. We present three constructions of caching and delivery arrays for different scenarios and obtain corresponding multi-antenna MACC schemes for the same. Two schemes resulting from the above constructions achieve optimal performance under uncoded placement and one-shot delivery. The optimality is shown by matching the performance of the multi-antenna MACC scheme to that of an optimal multi-antenna scheme for a dedicated cache network having an identical number of users, and each user has a normalized cache size of $rM/N$. Further, as a special case, one of the proposed schemes subsumes an existing optimal MACC scheme for the single-antenna setting.
This paper exploits the potential of edge intelligence empowered satellite-terrestrial networks, where users' computation tasks are offloaded to the satellites or terrestrial base stations. The computation task offloading in such networks involves the edge cloud selection and bandwidth allocations for the access and backhaul links, which aims to minimize the energy consumption under the delay and satellites' energy constraints. To address it, an alternating direction method of multipliers (ADMM)-inspired algorithm is proposed to decompose the joint optimization problem into small-scale subproblems. Moreover, we develop a hybrid quantum double deep Q-learning (DDQN) approach to optimize the edge cloud selection. This novel deep reinforcement learning architecture enables that classical and quantum neural networks process information in parallel. Simulation results confirm the efficiency of the proposed algorithm, and indicate that duality gap is tiny and a larger reward can be generated from a few data points compared to the classical DDQN.
Human intention-based systems enable robots to perceive and interpret user actions to interact with humans and adapt to their behavior proactively. Therefore, intention prediction is pivotal in creating a natural interaction with social robots in human-designed environments. In this paper, we examine using Large Language Models (LLMs) to infer human intention in a collaborative object categorization task with a physical robot. We propose a novel multimodal approach that integrates user non-verbal cues, like hand gestures, body poses, and facial expressions, with environment states and user verbal cues to predict user intentions in a hierarchical architecture. Our evaluation of five LLMs shows the potential for reasoning about verbal and non-verbal user cues, leveraging their context-understanding and real-world knowledge to support intention prediction while collaborating on a task with a social robot.
With the rapid development of artificial intelligence technology, especially the increasingly widespread application of question-and-answer systems, high-quality question generation has become a key component in supporting the development of these systems. This article focuses on knowledge-based question generation technology, which aims to enable computers to simulate the human questioning process based on understanding specific texts or knowledge bases. In light of the issues of hallucination and knowledge gaps present in large-scale language models when applied to knowledge-intensive tasks, this paper proposes an enhanced question generation method that incorporates contrastive learning. This method utilizes multiple models to jointly mine domain knowledge and uses contrastive learning to guide the model in reducing noise and hallucinations in generation. Experimental results show that by designing prompts containing contrasting examples, the model's performance in question generation improves considerably, particularly when contrasting instructions and examples are used simultaneously, leading to the highest quality of generated questions and improved accuracy. These results demonstrate that the method proposed in this study, which combines contrasting context and chain-of-thought prompts, can effectively improve both the quality and the practicality of question generation.
We present a new procedural incompressible velocity field authoring tool, which lets users design a volumetric flow by directly specifying velocity along control curves. Our method combines the Method of Regularized Stokeslets with Galerkin discretization. Based on the highly viscous Stokes flow assumption, we find the force along a given set of curves that satisfies the velocity constraints along them. We can then evaluate the velocity anywhere inside the surrounding infinite 2D or 3D domain. We also show the extension of our method to control the angular velocity along control curves. Compared to a collocation discretization, our method is not very sensitive to the vertex sampling rate along control curves and only requires a small linear system solve.
Autonomous driving system aims for safe and social-consistent driving through the behavioral integration among interactive agents. However, challenges remain due to multi-agent scene uncertainty and heterogeneous interaction. Current dense and sparse behavioral representations struggle with inefficiency and inconsistency in multi-agent modeling, leading to instability of collective behavioral patterns when integrating prediction and planning (IPP). To address this, we initiate a topological formation that serves as a compliant behavioral foreground to guide downstream trajectory generations. Specifically, we introduce Behavioral Topology (BeTop), a pivotal topological formulation that explicitly represents the consensual behavioral pattern among multi-agent future. BeTop is derived from braid theory to distill compliant interactive topology from multi-agent future trajectories. A synergistic learning framework (BeTopNet) supervised by BeTop facilitates the consistency of behavior prediction and planning within the predicted topology priors. Through imitative contingency learning, BeTop also effectively manages behavioral uncertainty for prediction and planning. Extensive verification on large-scale real-world datasets, including nuPlan and WOMD, demonstrates that BeTop achieves state-of-the-art performance in both prediction and planning tasks. Further validations on the proposed interactive scenario benchmark showcase planning compliance in interactive cases.
Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention. In developing policies for ``onboarding'' new users, these costs can be especially problematic, since on-boarding occurs only once. In this work, we describe a simulation methodology used to augment (and reduce) the use of live experiments. We illustrate its deployment for the evaluation of ``preference elicitation'' algorithms used to onboard new users of the YouTube Music platform. By developing counterfactually robust user behavior models, and a simulation service that couples such models with production infrastructure, we are able to test new algorithms in a way that reliably predicts their performance on key metrics when deployed live. We describe our domain, our simulation models and platform, results of experiments and deployment, and suggest future steps needed to further realistic simulation as a powerful complement to live experiments.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.