亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide non-asymptotic excess risk guarantees for statistical learning in a setting where the population risk with respect to which we evaluate the target parameter depends on an unknown nuisance parameter that must be estimated from data. We analyze a two-stage sample splitting meta-algorithm that takes as input arbitrary estimation algorithms for the target parameter and nuisance parameter. We show that if the population risk satisfies a condition called Neyman orthogonality, the impact of the nuisance estimation error on the excess risk bound achieved by the meta-algorithm is of second order. Our theorem is agnostic to the particular algorithms used for the target and nuisance and only makes an assumption on their individual performance. This enables the use of a plethora of existing results from machine learning to give new guarantees for learning with a nuisance component. Moreover, by focusing on excess risk rather than parameter estimation, we can provide rates under weaker assumptions than in previous works and accommodate settings in which the target parameter belongs to a complex nonparametric class. We provide conditions on the metric entropy of the nuisance and target classes such that oracle rates of the same order as if we knew the nuisance parameter are achieved.

相關內容

Three variants of the statistical complexity function, which is used as a criterion in the problem of detection of a useful signal in the signal-noise mixture, are considered. The probability distributions maximizing the considered variants of statistical complexity are obtained analytically and conclusions about the efficiency of using one or another variant for detection problem are made. The comparison of considered information characteristics is shown and analytical results are illustrated on an example of synthesized signals. A method is proposed for selecting the threshold of the information criterion, which can be used in decision rule for useful signal detection in the signal-noise mixture. The choice of the threshold depends a priori on the analytically obtained maximum values. As a result, the complexity based on the total variation demonstrates the best ability of useful signal detection.

This paper studies the quantization of heavy-tailed data in some fundamental statistical estimation problems, where the underlying distributions have bounded moments of some order. We propose to truncate and properly dither the data prior to a uniform quantization. Our major standpoint is that (near) minimax rates of estimation error are achievable merely from the quantized data produced by the proposed scheme. In particular, concrete results are worked out for covariance estimation, compressed sensing, and matrix completion, all agreeing that the quantization only slightly worsens the multiplicative factor. Besides, we study compressed sensing where both covariate (i.e., sensing vector) and response are quantized. Under covariate quantization, although our recovery program is non-convex because the covariance matrix estimator lacks positive semi-definiteness, all local minimizers are proved to enjoy near optimal error bound. Moreover, by the concentration inequality of product process and covering argument, we establish near minimax uniform recovery guarantee for quantized compressed sensing with heavy-tailed noise.

The recent explosion of interest in multimodal applications has resulted in a wide selection of datasets and methods for representing and integrating information from different modalities. Despite these empirical advances, there remain fundamental research questions: How can we quantify the interactions that are necessary to solve a multimodal task? Subsequently, what are the most suitable multimodal models to capture these interactions? To answer these questions, we propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task. We term these three measures as the PID statistics of a multimodal distribution (or PID for short), and introduce two new estimators for these PID statistics that scale to high-dimensional distributions. To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks where PID estimations are compared with human annotations. Finally, we demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies engaging with domain experts in pathology, mood prediction, and robotic perception where our framework helps to recommend strong multimodal models for each application.

We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple effective Zel'dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, highlighting their interpretation and statistical properties caused by sample variance, in particular, nontrivial expectation values of certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable datasets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements from the data itself. The code used in this paper is publicly available at //github.com/oliverphilcox/RascalC.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Minimizing cross-entropy over the softmax scores of a linear map composed with a high-capacity encoder is arguably the most popular choice for training neural networks on supervised learning tasks. However, recent works show that one can directly optimize the encoder instead, to obtain equally (or even more) discriminative representations via a supervised variant of a contrastive objective. In this work, we address the question whether there are fundamental differences in the sought-for representation geometry in the output space of the encoder at minimal loss. Specifically, we prove, under mild assumptions, that both losses attain their minimum once the representations of each class collapse to the vertices of a regular simplex, inscribed in a hypersphere. We provide empirical evidence that this configuration is attained in practice and that reaching a close-to-optimal state typically indicates good generalization performance. Yet, the two losses show remarkably different optimization behavior. The number of iterations required to perfectly fit to data scales superlinearly with the amount of randomly flipped labels for the supervised contrastive loss. This is in contrast to the approximately linear scaling previously reported for networks trained with cross-entropy.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

北京阿比特科技有限公司