This paper proposes and analyzes an ultra-weak local discontinuous Galerkin scheme for one-dimensional nonlinear biharmonic Schr\"{o}dinger equations. We develop the paradigm of the local discontinuous Galerkin method by introducing the second-order spatial derivative as an auxiliary variable instead of the conventional first-order derivative. The proposed semi-discrete scheme preserves a few physically relevant properties such as the conservation of mass and the conservation of Hamiltonian accompanied by its stability for the targeted nonlinear biharmonic Schr\"{o}dinger equations. We also derive optimal $L^2$-error estimates of the scheme that measure both the solution and the auxiliary variable. Several numerical studies demonstrate and support our theoretical findings.
In this paper, we revisit the $L_2$-norm error estimate for $C^0$-interior penalty analysis of Dirichlet boundary control problem governed by biharmonic operator. In this work, we have relaxed the interior angle condition of the domain from $120$ degrees to $180$ degrees, therefore this analysis can be carried out for any convex domain. The theoretical findings are illustrated by numerical experiments. Moreover, we propose a new analysis to derive the error estimates for the biharmonic equation with Cahn-Hilliard type boundary condition under minimal regularity assumption.
In this paper, we develop a framework to construct energy-preserving methods for multi-components Hamiltonian systems, combining the exponential integrator and the partitioned averaged vector field method. This leads to numerical schemes with both advantages of long-time stability and excellent behavior for highly oscillatory or stiff problems. Compared to the existing energy-preserving exponential integrators (EP-EI) in practical implementation, our proposed methods are much efficient which can at least be computed by subsystem instead of handling a nonlinear coupling system at a time. Moreover, for most cases, such as the Klein-Gordon-Schr\"{o}dinger equations and the Klein-Gordon-Zakharov equations considered in this paper, the computational cost can be further reduced. Specifically, one part of the derived schemes is totally explicit, and the other is linearly implicit. In addition, we present rigorous proof of conserving the original energy of Hamiltonian systems, in which an alternative technique is utilized so that no additional assumptions are required, in contrast to the proof strategies used for the existing EP-EI. Numerical experiments are provided to demonstrate the significant advantages in accuracy, computational efficiency, and the ability to capture highly oscillatory solutions.
In this paper, we extend the positivity-preserving, entropy stable first-order finite volume-type scheme developed for the one-dimensional compressible Navier-Stokes equations in [1] to three spatial dimensions. The new first-order scheme is provably entropy stable, design-order accurate for smooth solutions, and guarantees the pointwise positivity of thermodynamic variables for 3-D compressible viscous flows. Similar to the 1-D counterpart, the proposed scheme for the 3-D Navier-Stokes equations is discretized on Legendre-Gauss-Lobatto grids used for high-order spectral collocation methods. The positivity of density is achieved by adding an artificial dissipation in the form of the first-order Brenner-Navier-Stokes diffusion operator. Another distinctive feature of the proposed scheme is that the Navier-Stokes viscous terms are discretized by high-order spectral collocation summation-by-parts operators. To eliminate time step stiffness caused by the high-order approximation of the viscous terms, the velocity and temperature limiters developed for the 1-D compressible Navier-Stokes equations in [1] are generalized to three spatial dimensions. These limiters bound the magnitude of velocity and temperature gradients and preserve the entropy stability and positivity properties of the baseline scheme. Numerical results are presented to demonstrate design-order accuracy and positivity-preserving properties of the new first-order scheme for 2-D and 3-D inviscid and viscous flows with strong shocks and contact discontinuities.
We revisit the theoretical properties of Hamiltonian stochastic differential equations (SDES) for Bayesian posterior sampling, and we study the two types of errors that arise from numerical SDE simulation: the discretization error and the error due to noisy gradient estimates in the context of data subsampling. Our main result is a novel analysis for the effect of mini-batches through the lens of differential operator splitting, revising previous literature results. The stochastic component of a Hamiltonian SDE is decoupled from the gradient noise, for which we make no normality assumptions. This leads to the identification of a convergence bottleneck: when considering mini-batches, the best achievable error rate is $\mathcal{O}(\eta^2)$, with $\eta$ being the integrator step size. Our theoretical results are supported by an empirical study on a variety of regression and classification tasks for Bayesian neural networks.
We propose a simple quantum algorithm for simulating highly oscillatory quantum dynamics, which does not require complicated quantum control logic for handling time-ordering operators. To our knowledge, this is the first quantum algorithm that is both insensitive to the rapid changes of the time-dependent Hamiltonian and exhibits commutator scaling. Our method can be used for efficient Hamiltonian simulation in the interaction picture. In particular, we demonstrate that for the simulation of the Schr\"odinger equation, our method exhibits superconvergence and achieves a surprising second order convergence rate, of which the proof rests on a careful application of pseudo-differential calculus. Numerical results verify the effectiveness and the superconvergence property of our method.
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.
We consider the Dynamical Low Rank (DLR) approximation of random parabolic equations and propose a class of fully discrete numerical schemes. Similarly to the continuous DLR approximation, our schemes are shown to satisfy a discrete variational formulation. By exploiting this property, we establish stability of our schemes: we show that our explicit and semi-implicit versions are conditionally stable under a parabolic type CFL condition which does not depend on the smallest singular value of the DLR solution; whereas our implicit scheme is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit scheme can be unconditionally stable if the randomness in the system is sufficiently small. Furthermore, we show that these schemes can be interpreted as projector-splitting integrators and are strongly related to the scheme proposed by Lubich et al. [BIT Num. Math., 54:171-188, 2014; SIAM J. on Num. Anal., 53:917-941, 2015], to which our stability analysis applies as well. The analysis is supported by numerical results showing the sharpness of the obtained stability conditions.
We describe a new approach to derive numerical approximations of boundary conditions for high-order accurate finite-difference approximations. The approach, called the Local Compatibility Boundary Condition (LCBC) method, uses boundary conditions and compatibility boundary conditions derived from the governing equations, as well as interior and boundary grid values, to construct a local polynomial, whose degree matches the order of accuracy of the interior scheme, centered at each boundary point. The local polynomial is then used to derive a discrete formula for each ghost point in terms of the data. This approach leads to centered approximations that are generally more accurate and stable than one-sided approximations. Moreover, the stencil approximations are local since they do not couple to neighboring ghost-point values which can occur with traditional compatibility conditions. The local polynomial is derived using continuous operators and derivatives which enables the automatic construction of stencil approximations at different orders of accuracy. The LCBC method is developed here for problems governed by second-order partial differential equations, and it is verified for a wide range of sample problems, both time-dependent and time-independent, in two space dimensions and for schemes up to sixth-order accuracy.
In this paper, we mainly focus on solving high-dimensional stochastic Hamiltonian systems with boundary condition, and propose a novel method from the view of the stochastic control. In order to obtain the approximated solution of the Hamiltonian system, we first introduce a corresponding stochastic optimal control problem such that the Hamiltonian system of control problem is exactly what we need to solve, then develop two different algorithms suitable for different cases of the control problem and approximate the stochastic control via deep neural networks. From the numerical results, comparing with the Deep FBSDE method which was developed previously from the view of solving FBSDEs, the novel algorithms converge faster, which means that they require fewer training steps, and demonstrate more stable convergences for different Hamiltonian systems.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.