亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cloud data storage solutions offer customers cost-effective and reduced data management. While attractive, data security issues remain to be a core concern. Traditional encryption protects stored documents, but hinders simple functionalities such as keyword search. Therefore, searchable encryption schemes have been proposed to allow for the search on encrypted data. Efficient schemes leak at least the access pattern (the accessed documents per keyword search), which is known to be exploitable in query recovery attacks assuming the attacker has a significant amount of background knowledge on the stored documents. Existing attacks can only achieve decent results with strong adversary models (e.g. at least 20% of previously known documents or require additional knowledge such as on query frequencies) and they give no metric to evaluate the certainty of recovered queries. This hampers their practical utility and questions their relevance in the real-world. We propose a refined score attack which achieves query recovery rates of around 85% without requiring exact background knowledge on stored documents; a distributionally similar, but otherwise different (i.e., non-indexed), dataset suffices. The attack starts with very few known queries (around 10 known queries in our experiments over different datasets of varying size) and then iteratively recovers further queries with confidence scores by adding previously recovered queries that had high confidence scores to the set of known queries. Additional to high recovery rates, our approach yields interpretable results in terms of confidence scores.

相關內容

For decades, database research has focused on optimizing performance under fixed resources. As more and more database applications move to the public cloud, we argue that it is time to make cost a first-class citizen when solving database optimization problems. In this paper, we introduce the concept of cost intelligence and envision the architecture of a cloud data warehouse designed for that. We investigate two critical challenges to achieving cost intelligence in an analytical system: automatic resource deployment and cost-oriented auto-tuning. We describe our system architecture with an emphasis on the components that are missing in today's cloud data warehouses. Each of these new components represents unique research opportunities in this much-needed research area.

This paper presents GLITCH, a new technology-agnostic framework that enables automated polyglot code smell detection for Infrastructure as Code scripts. GLITCH uses an intermediate representation on which different code smell detectors can be defined. It currently supports the detection of nine security smells and nine design & implementation smells in scripts written in Ansible, Chef, Docker, Puppet, or Terraform. Studies conducted with GLITCH not only show that GLITCH can reduce the effort of writing code smell analyses for multiple IaC technologies, but also that it has higher precision and recall than current state-of-the-art tools. A video describing and demonstrating GLITCH is available at: //youtu.be/E4RhCcZjWbk

We propose a unified point cloud video self-supervised learning framework for object-centric and scene-centric data. Previous methods commonly conduct representation learning at the clip or frame level and cannot well capture fine-grained semantics. Instead of contrasting the representations of clips or frames, in this paper, we propose a unified self-supervised framework by conducting contrastive learning at the point level. Moreover, we introduce a new pretext task by achieving semantic alignment of superpoints, which further facilitates the representations to capture semantic cues at multiple scales. In addition, due to the high redundancy in the temporal dimension of dynamic point clouds, directly conducting contrastive learning at the point level usually leads to massive undesired negatives and insufficient modeling of positive representations. To remedy this, we propose a selection strategy to retain proper negatives and make use of high-similarity samples from other instances as positive supplements. Extensive experiments show that our method outperforms supervised counterparts on a wide range of downstream tasks and demonstrates the superior transferability of the learned representations.

Since the beginning of this decade, several incidents report that false data injection attacks targeting intelligent connected vehicles cause huge industrial damage and loss of lives. Data Theft, Flooding, Fuzzing, Hijacking, Malware Spoofing and Advanced Persistent Threats have been immensely growing attack that leads to end-user conflict by abolishing trust on autonomous vehicle. Looking after those sensitive data that contributes to measure the localisation factors of the vehicle, conventional centralised techniques can be misused to update the legitimate vehicular status maliciously. As investigated, the existing centralized false data detection approach based on state and likelihood estimation has a reprehensible trade-off in terms of accuracy, trust, cost, and efficiency. Blockchain with Fuzzy-logic Intelligence has shown its potential to solve localisation issues, trust and false data detection challenges encountered by today's autonomous vehicular system. The proposed Blockchain-based fuzzy solution demonstrates a novel false data detection and reputation preservation technique. The illustrated proposed model filters false and anomalous data based on the vehicles' rules and behaviours. Besides improving the detection accuracy and eliminating the single point of failure, the contributions include appropriating fuzzy AI functions within the Road-side Unit node before authorizing status data by a Blockchain network. Finally, thorough experimental evaluation validates the effectiveness of the proposed model.

Grassland ecosystems support a wide range of species and provide key services including food production, carbon storage, biodiversity support, and flood mitigation. However, yield stability in these grassland systems is not yet well understood, with recent evidence suggesting water stress throughout summer and warmer temperatures in late summer reduce yield stability. In this study we investigate how grassland yield stability of the Park Grass Experiment, UK, has changed over time by developing a Bayesian time-varying Autoregressive and time-varying Generalised Autoregressive Conditional Heterogeneity model using the variance-parameterised Gamma likelihood function.

Combining the strengths of model-based iterative algorithms and data-driven deep learning solutions, deep unrolling networks (DuNets) have become a popular tool to solve inverse imaging problems. While DuNets have been successfully applied to many linear inverse problems, nonlinear problems tend to impair the performance of the method. Inspired by momentum acceleration techniques that are often used in optimization algorithms, we propose a recurrent momentum acceleration (RMA) framework that uses a long short-term memory recurrent neural network (LSTM-RNN) to simulate the momentum acceleration process. The RMA module leverages the ability of the LSTM-RNN to learn and retain knowledge from the previous gradients. We apply RMA to two popular DuNets -- the learned proximal gradient descent (LPGD) and the learned primal-dual (LPD) methods, resulting in LPGD-RMA and LPD-RMA respectively. We provide experimental results on two nonlinear inverse problems: a nonlinear deconvolution problem, and an electrical impedance tomography problem with limited boundary measurements. In the first experiment we have observed that the improvement due to RMA largely increases with respect to the nonlinearity of the problem. The results of the second example further demonstrate that the RMA schemes can significantly improve the performance of DuNets in strongly ill-posed problems.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

北京阿比特科技有限公司