亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most knowledge graph completion (KGC) methods learn latent representations of entities and relations of a given graph by mapping them into a vector space. Although the majority of these methods focus on static knowledge graphs, a large number of publicly available KGs contain temporal information stating the time instant/period over which a certain fact has been true. Such graphs are often known as temporal knowledge graphs. Furthermore, knowledge graphs may also contain textual descriptions of entities and relations. Both temporal information and textual descriptions are not taken into account during representation learning by static KGC methods, and only structural information of the graph is leveraged. Recently, some studies have used temporal information to improve link prediction, yet they do not exploit textual descriptions and do not support inductive inference (prediction on entities that have not been seen in training). We propose a novel framework called TEMT that exploits the power of pre-trained language models (PLMs) for text-enhanced temporal knowledge graph completion. The knowledge stored in the parameters of a PLM allows TEMT to produce rich semantic representations of facts and to generalize on previously unseen entities. TEMT leverages textual and temporal information available in a KG, treats them separately, and fuses them to get plausibility scores of facts. Unlike previous approaches, TEMT effectively captures dependencies across different time points and enables predictions on unseen entities. To assess the performance of TEMT, we carried out several experiments including time interval prediction, both in transductive and inductive settings, and triple classification. The experimental results show that TEMT is competitive with the state-of-the-art.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · PCA · 估計/估計量 · 模型構建 ·
2023 年 11 月 13 日

Most prognostic methods require a decent amount of data for model training. In reality, however, the amount of historical data owned by a single organization might be small or not large enough to train a reliable prognostic model. To address this challenge, this article proposes a federated prognostic model that allows multiple users to jointly construct a failure time prediction model using their multi-stream, high-dimensional, and incomplete data while keeping each user's data local and confidential. The prognostic model first employs multivariate functional principal component analysis to fuse the multi-stream degradation signals. Then, the fused features coupled with the times-to-failure are utilized to build a (log)-location-scale regression model for failure prediction. To estimate parameters using distributed datasets and keep the data privacy of all participants, we propose a new federated algorithm for feature extraction. Numerical studies indicate that the performance of the proposed model is the same as that of classic non-federated prognostic models and is better than that of the models constructed by each user itself.

Neural Machine Translation (NMT) has become a significant technology in natural language processing through extensive research and development. However, the deficiency of high-quality bilingual language pair data still poses a major challenge to improving NMT performance. Recent studies are exploring the use of contextual information from pre-trained language model (PLM) to address this problem. Yet, the issue of incompatibility between PLM and NMT model remains unresolved. This study proposes a PLM-integrated NMT (PiNMT) model to overcome the identified problems. The PiNMT model consists of three critical components, PLM Multi Layer Converter, Embedding Fusion, and Cosine Alignment, each playing a vital role in providing effective PLM information to NMT. Furthermore, two training strategies, Separate Learning Rates and Dual Step Training, are also introduced in this paper. By implementing the proposed PiNMT model and training strategy, we achieved state-of-the-art performance on the IWSLT'14 En$\leftrightarrow$De dataset. This study's outcomes are noteworthy as they demonstrate a novel approach for efficiently integrating PLM with NMT to overcome incompatibility and enhance performance.

Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures user behaviour and product-side knowledge through language modelling. With our approach, knowledge graph embeddings are directly learned from paths over the KG by the language model, which also unifies entities and relations in the same optimisation space. Constraints on the sequence decoding additionally guarantee path faithfulness with respect to the KG. Experiments on two datasets show the effectiveness of our approach compared to state-of-the-art baselines. Source code and datasets: AVAILABLE AFTER GETTING ACCEPTED.

Research into methods for improving the performance of large language models (LLMs) through fine-tuning, retrieval-augmented generation (RAG) and soft-prompting has tended to focus on the use of highly technical or high-cost techniques, making many of the newly discovered approaches comparatively inaccessible to non-technical users. In this paper we tested an unmodified version of GPT 3.5, a fine-tuned version, and the same unmodified model when given access to a vectorised RAG database, both in isolation and in combination with a basic, non-algorithmic soft prompt. In each case we tested the model's ability to answer a set of 100 questions relating primarily to events that occurred after September 2021 (the point at which GPT 3.5's training data set ends). We found that if commercial platforms are used and default settings are applied with no iteration in order to establish a baseline set of outputs, a fine-tuned model outperforms GPT 3.5 Turbo, while the RAG approach out-performed both. The application of a soft prompt significantly improved the performance of each approach.

Academic tabular benchmarks often contain small sets of curated features. In contrast, data scientists typically collect as many features as possible into their datasets, and even engineer new features from existing ones. To prevent overfitting in subsequent downstream modeling, practitioners commonly use automated feature selection methods that identify a reduced subset of informative features. Existing benchmarks for tabular feature selection consider classical downstream models, toy synthetic datasets, or do not evaluate feature selectors on the basis of downstream performance. Motivated by the increasing popularity of tabular deep learning, we construct a challenging feature selection benchmark evaluated on downstream neural networks including transformers, using real datasets and multiple methods for generating extraneous features. We also propose an input-gradient-based analogue of Lasso for neural networks that outperforms classical feature selection methods on challenging problems such as selecting from corrupted or second-order features.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.

北京阿比特科技有限公司