亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Advancements in semiconductor technology have reduced dimensions and cost while improving the performance and capacity of chipsets. In addition, advancement in the AI frameworks and libraries brings possibilities to accommodate more AI at the resource-constrained edge of consumer IoT devices. Sensors are nowadays an integral part of our environment which provide continuous data streams to build intelligent applications. An example could be a smart home scenario with multiple interconnected devices. In such smart environments, for convenience and quick access to web-based service and personal information such as calendars, notes, emails, reminders, banking, etc, users link third-party skills or skills from the Amazon store to their smart speakers. Also, in current smart home scenarios, several smart home products such as smart security cameras, video doorbells, smart plugs, smart carbon monoxide monitors, and smart door locks, etc. are interlinked to a modern smart speaker via means of custom skill addition. Since smart speakers are linked to such services and devices via the smart speaker user's account. They can be used by anyone with physical access to the smart speaker via voice commands. If done so, the data privacy, home security and other aspects of the user get compromised. Recently launched, Tensor Cam's AI Camera, Toshiba's Symbio, Facebook's Portal are camera-enabled smart speakers with AI functionalities. Although they are camera-enabled, yet they do not have an authentication scheme in addition to calling out the wake-word. This paper provides an overview of cybersecurity risks faced by smart speaker users due to lack of authentication scheme and discusses the development of a state-of-the-art camera-enabled, microphone array-based modern Alexa smart speaker prototype to address these risks.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · AIM · MoDELS · 回合 · ENJOY ·
2022 年 9 月 19 日

Metaverse is a vast virtual environment parallel to the physical world in which users enjoy a variety of services acting as an avatar. To build a secure living habitat, it's vital to ensure the virtual-physical traceability that tracking a malicious player in the physical world via his avatars in virtual space. In this paper, we propose a two-factor authentication framework based on chameleon signature and biometric-based authentication. First, aiming at disguise in virtual space, we propose a chameleon collision signature algorithm to achieve the verifiability of the avatar's virtual identity. Second, facing at impersonation in physical world, we construct an avatar's identity model based on the player's biometric template and the chameleon key to realize the verifiability of the avatar's physical identity. Finally, we design two decentralized authentication protocols based on the avatar's identity model to ensure the consistency of the avatar's virtual and physical identities. Security analysis indicates that the proposed authentication framework guarantees the consistency and traceability of avatar's identity. Simulation experiments show that the framework not only completes the decentralized authentication between avatars but also achieves the virtual-physical tracking.

Heterogeneous big data poses many challenges in machine learning. Its enormous scale, high dimensionality, and inherent uncertainty make almost every aspect of machine learning difficult, from providing enough processing power to maintaining model accuracy to protecting privacy. However, perhaps the most imposing problem is that big data is often interspersed with sensitive personal data. Hence, we propose a privacy-preserving hierarchical fuzzy neural network (PP-HFNN) to address these technical challenges while also alleviating privacy concerns. The network is trained with a two-stage optimization algorithm, and the parameters at low levels of the hierarchy are learned with a scheme based on the well-known alternating direction method of multipliers, which does not reveal local data to other agents. Coordination at high levels of the hierarchy is handled by the alternating optimization method, which converges very quickly. The entire training procedure is scalable, fast and does not suffer from gradient vanishing problems like the methods based on back-propagation. Comprehensive simulations conducted on both regression and classification tasks demonstrate the effectiveness of the proposed model.

This paper presents a method to control a manipulator system grasping a rigid-body payload so that the motion of the combined system in consequence of externally applied forces to be the same as another free-floating rigid-body (with different inertial properties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g laboratory environment. The controller consisting of motion feedback and force/moment feedback adjusts the motion of the test spacecraft so as to match that of the flight spacecraft, even if the latter has flexible appendages (such as solar panels) and the former is rigid. The stability of the overall system is analytically investigated, and the results show that the system remains stable provided that the inertial properties of two spacecraft are different and that an upperbound on the norm of the inertia ratio of the payload to manipulator is respected. Important practical issues such as calibration and sensitivity analysis to sensor noise and quantization are also presented.

The amoebot model abstracts active programmable matter as a collection of simple computational elements called amoebots that interact locally to collectively achieve tasks of coordination and movement. Since its introduction at SPAA 2014, a growing body of literature has adapted its assumptions for a variety of problems; however, without a standardized hierarchy of assumptions, precise systematic comparison of results under the amoebot model is difficult. We propose the canonical amoebot model, an updated formalization that distinguishes between core model features and families of assumption variants. A key improvement addressed by the canonical amoebot model is concurrency. Much of the existing literature implicitly assumes amoebot actions are isolated and reliable, reducing analysis to the sequential setting where at most one amoebot is active at a time. However, real programmable matter systems are concurrent. The canonical amoebot model formalizes all amoebot communication as message passing, leveraging adversarial activation models of concurrent executions. Under this granular treatment of time, we take two complementary approaches to concurrent algorithm design. We first establish a set of sufficient conditions for algorithm correctness under any concurrent execution, embedding concurrency control directly in algorithm design. We then present a concurrency control framework that uses locks to convert amoebot algorithms that terminate in the sequential setting and satisfy certain conventions into algorithms that exhibit equivalent behavior in the concurrent setting. As a case study, we demonstrate both approaches using a simple algorithm for hexagon formation. Together, the canonical amoebot model and these complementary approaches to concurrent algorithm design open new directions for distributed computing research on programmable matter.

In recent cyber attacks, credential theft has emerged as one of the primary vectors of gaining entry into the system. Once attacker(s) have a foothold in the system, they use various techniques including token manipulation to elevate the privileges and access protected resources. This makes authentication and token based authorization a critical component for a secure and resilient cyber system. In this paper we discuss the design considerations for such a secure and resilient authentication and authorization framework capable of self-adapting based on the risk scores and trust profiles. We compare this design with the existing standards such as OAuth 2.0, OpenID Connect and SAML 2.0. We then study popular threat models such as STRIDE and PASTA and summarize the resilience of the proposed architecture against common and relevant threat vectors. We call this framework as Resilient Risk based Adaptive Authentication and Authorization (RAD-AA). The proposed framework excessively increases the cost for an adversary to launch and sustain any cyber attack and provides much-needed strength to critical infrastructure. We also discuss the machine learning (ML) approach for the adaptive engine to accurately classify transactions and arrive at risk scores.

The fifth and sixth generations of wireless communication networks are enabling tools such as internet of things devices, unmanned aerial vehicles (UAVs), and artificial intelligence, to improve the agricultural landscape using a network of devices to automatically monitor farmlands. Surveying a large area requires performing a lot of image classification tasks within a specific period of time in order to prevent damage to the farm in case of an incident, such as fire or flood. UAVs have limited energy and computing power, and may not be able to perform all of the intense image classification tasks locally and within an appropriate amount of time. Hence, it is assumed that the UAVs are able to partially offload their workload to nearby multi-access edge computing devices. The UAVs need a decision-making algorithm that will decide where the tasks will be performed, while also considering the time constraints and energy level of the other UAVs in the network. In this paper, we introduce a Deep Q-Learning (DQL) approach to solve this multi-objective problem. The proposed method is compared with Q-Learning and three heuristic baselines, and the simulation results show that our proposed DQL-based method achieves comparable results when it comes to the UAVs' remaining battery levels and percentage of deadline violations. In addition, our method is able to reach convergence 13 times faster than Q-Learning.

There is a long history of an effort made to explore musical elements with the entities and spaces around us, such as musique concr\`ete and ambient music. In the context of computer music and digital art, interactive experiences that concentrate on the surrounding objects and physical spaces have also been designed. In recent years, with the development and popularization of devices, an increasing number of works have been designed in Extended Reality to create such musical experiences. In this paper, we describe MR4MR, a sound installation work that allows users to experience melodies produced from interactions with their surrounding space in the context of Mixed Reality (MR). Using HoloLens, an MR head-mounted display, users can bump virtual objects that emit sound against real objects in their surroundings. Then, by continuously creating a melody following the sound made by the object and re-generating randomly and gradually changing melody using music generation machine learning models, users can feel their ambient melody "reincarnating".

We consider a potential outcomes model in which interference may be present between any two units but the extent of interference diminishes with spatial distance. The causal estimand is the global average treatment effect, which compares outcomes under the counterfactuals that all or no units are treated. We study a class of designs in which space is partitioned into clusters that are randomized into treatment and control. For each design, we estimate the treatment effect using a Horvitz-Thompson estimator that compares the average outcomes of units with all or no neighbors treated, where the neighborhood radius is of the same order as the cluster size dictated by the design. We derive the estimator's rate of convergence as a function of the design and degree of interference and use this to obtain estimator-design pairs that achieve near-optimal rates of convergence under relatively minimal assumptions on interference. We prove that the estimators are asymptotically normal and provide a variance estimator. For practical implementation of the designs, we suggest partitioning space using clustering algorithms.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.

北京阿比特科技有限公司