This paper extends the linear grouped fixed effects (GFE) panel model to allow for heteroskedasticity from a discrete latent group variable. Key features of GFE are preserved, such as individuals belonging to one of a finite number of groups and group membership is unrestricted and estimated. Ignoring group heteroskedasticity may lead to poor classification, which is detrimental to finite sample bias and standard errors of estimators. I introduce the "weighted grouped fixed effects" (WGFE) estimator that minimizes a weighted average of group sum of squared residuals. I establish $\sqrt{NT}$-consistency and normality under a concept of group separation based on second moments. A test of group homoskedasticity is discussed. A fast computation procedure is provided. Simulations show that WGFE outperforms alternatives that exclude second moment information. I demonstrate this approach by considering the link between income and democracy and the effect of unionization on earnings.
The field of computational pathology has witnessed remarkable progress in the development of both task-specific predictive models and task-agnostic self-supervised vision encoders. However, despite the explosive growth of generative artificial intelligence (AI), there has been limited study on building general purpose, multimodal AI assistants tailored to pathology. Here we present PathChat, a vision-language generalist AI assistant for human pathology using an in-house developed foundational vision encoder pretrained on 100 million histology images from over 100,000 patient cases and 1.18 million pathology image-caption pairs. The vision encoder is then combined with a pretrained large language model and the whole system is finetuned on over 250,000 diverse disease agnostic visual language instructions. We compare PathChat against several multimodal vision language AI assistants as well as GPT4V, which powers the commercially available multimodal general purpose AI assistant ChatGPT-4. When relevant clinical context is provided with the histology image, PathChat achieved a diagnostic accuracy of 87% on multiple-choice questions based on publicly available cases of diverse tissue origins and disease models. Additionally, using open-ended questions and human expert evaluation, we found that overall PathChat produced more accurate and pathologist-preferable responses to diverse queries related to pathology. As an interactive and general vision language AI assistant that can flexibly handle both visual and natural language inputs, PathChat can potentially find impactful applications in pathology education, research, and human-in-the-loop clinical decision making.
Visualization of extremely large datasets in static or dynamic form is a huge challenge because most traditional methods cannot deal with big data problems. A new visualization method for big data is proposed based on Projection Pursuit, Guided Tour and Data Nuggets methods, that will help display interesting hidden structures such as clusters, outliers, and other nonlinear structures in big data. The Guided Tour is a dynamic graphical tool for high-dimensional data combining Projection Pursuit and Grand Tour methods. It displays a dynamic sequence of low-dimensional projections obtained by using Projection Pursuit (PP) index functions to navigate the data space. Different PP indices have been developed to detect interesting structures of multivariate data but there are computational problems for big data using the original guided tour with these indices. A new PP index is developed to be computable for big data, with the help of a data compression method called Data Nuggets that reduces large datasets while maintaining the original data structure. Simulation studies are conducted and a real large dataset is used to illustrate the proposed methodology. Static and dynamic graphical tools for big data can be developed based on the proposed PP index to detect nonlinear structures.
This paper considers the out-of-distribution (OOD) generalization problem under the setting that both style distribution shift and spurious features exist and domain labels are missing. This setting frequently arises in real-world applications and is underlooked because previous approaches mainly handle either of these two factors. The critical challenge is decoupling style and spurious features in the absence of domain labels. To address this challenge, we first propose a structural causal model (SCM) for the image generation process, which captures both style distribution shift and spurious features. The proposed SCM enables us to design a new framework called IRSS, which can gradually separate style distribution and spurious features from images by introducing adversarial neural networks and multi-environment optimization, thus achieving OOD generalization. Moreover, it does not require additional supervision (e.g., domain labels) other than the images and their corresponding labels. Experiments on benchmark datasets demonstrate that IRSS outperforms traditional OOD methods and solves the problem of Invariant risk minimization (IRM) degradation, enabling the extraction of invariant features under distribution shift.
We apply a physics-informed deep-learning approach the PINN approach to the Black-Scholes equation for pricing American and European options. We test our approach on both simulated as well as real market data, compare it to analytical/numerical benchmarks. Our model is able to accurately capture the price behaviour on simulation data, while also exhibiting reasonable performance for market data. We also experiment with the architecture and learning process of our PINN model to provide more understanding of convergence and stability issues that impact performance.
We derive optimality conditions for the optimum sample allocation problem in stratified sampling, formulated as the determination of the fixed strata sample sizes that minimize the total cost of the survey, under the assumed level of variance of the stratified $\pi$ estimator of the population total (or mean) and one-sided upper bounds imposed on sample sizes in strata. In this context, we presume that the variance function is of some generic form that, in particular, covers the case of the simple random sampling without replacement design in strata. The optimality conditions mentioned above will be derived from the Karush-Kuhn-Tucker conditions. Based on the established optimality conditions, we provide a formal proof of the optimality of the existing procedure, termed here as LRNA, which solves the allocation problem considered. We formulate the LRNA in such a way that it also provides the solution to the classical optimum allocation problem (i.e. minimization of the estimator's variance under a fixed total cost) under one-sided lower bounds imposed on sample sizes in strata. In this context, the LRNA can be considered as a counterparty to the popular recursive Neyman allocation procedure that is used to solve the classical problem of an optimum sample allocation with added one-sided upper bounds. Ready-to-use R-implementation of the LRNA is available through our stratallo package, which is published on the Comprehensive R Archive Network (CRAN) package repository.
The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.
Recent progress in inpainting increasingly relies on generative models, leveraging their strong generation capabilities for addressing ill-conditioned problems. However, this enhanced generation often introduces instability, leading to arbitrary object generation within masked regions. This paper proposes a balanced solution, emphasizing the importance of unmasked regions in guiding inpainting while preserving generative capacity. Our approach, Aligned Stable Inpainting with UnKnown Areas Prior (ASUKA), employs a reconstruction-based masked auto-encoder (MAE) as a stable prior. Aligned with the robust Stable Diffusion inpainting model (SD), ASUKA significantly improves inpainting stability. ASUKA further aligns masked and unmasked regions through an inpainting-specialized decoder, ensuring more faithful inpainting. To validate effectiveness across domains and masking scenarios, we evaluate on MISATO, a collection of several existing dataset. Results confirm ASUKA's efficacy in both stability and fidelity compared to SD and other inpainting algorithms.
Multicalibration is a notion of fairness for predictors that requires them to provide calibrated predictions across a large set of protected groups. Multicalibration is known to be a distinct goal than loss minimization, even for simple predictors such as linear functions. In this work, we consider the setting where the protected groups can be represented by neural networks of size $k$, and the predictors are neural networks of size $n > k$. We show that minimizing the squared loss over all neural nets of size $n$ implies multicalibration for all but a bounded number of unlucky values of $n$. We also give evidence that our bound on the number of unlucky values is tight, given our proof technique. Previously, results of the flavor that loss minimization yields multicalibration were known only for predictors that were near the ground truth, hence were rather limited in applicability. Unlike these, our results rely on the expressivity of neural nets and utilize the representation of the predictor.
Time series discords are a useful primitive for time series anomaly detection, and the matrix profile is capable of capturing discord effectively. There exist many research efforts to improve the scalability of discord discovery with respect to the length of time series. However, there is surprisingly little work focused on reducing the time complexity of matrix profile computation associated with dimensionality of a multidimensional time series. In this work, we propose a sketch for discord mining among multi-dimensional time series. After an initial pre-processing of the sketch as fast as reading the data, the discord mining has runtime independent of the dimensionality of the original data. On several real world examples from water treatment and transportation, the proposed algorithm improves the throughput by at least an order of magnitude (50X) and only has minimal impact on the quality of the approximated solution. Additionally, the proposed method can handle the dynamic addition or deletion of dimensions inconsequential overhead. This allows a data analyst to consider "what-if" scenarios in real time while exploring the data.
This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.