亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper begins with a description of methods for estimating probability density functions for images that reflects the observation that such data is usually constrained to lie in restricted regions of the high-dimensional image space - not every pattern of pixels is an image. It is common to say that images lie on a lower-dimensional manifold in the high-dimensional space. However, although images may lie on such lower-dimensional manifolds, it is not the case that all points on the manifold have an equal probability of being images. Images are unevenly distributed on the manifold, and our task is to devise ways to model this distribution as a probability distribution. In pursuing this goal, we consider generative models that are popular in AI and computer vision community. For our purposes, generative/probabilistic models should have the properties of 1) sample generation: it should be possible to sample from this distribution according to the modelled density function, and 2) probability computation: given a previously unseen sample from the dataset of interest, one should be able to compute the probability of the sample, at least up to a normalising constant. To this end, we investigate the use of methods such as normalising flow and diffusion models. We then show that such probabilistic descriptions can be used to construct defences against adversarial attacks. In addition to describing the manifold in terms of density, we also consider how semantic interpretations can be used to describe points on the manifold. To this end, we consider an emergent language framework which makes use of variational encoders to produce a disentangled representation of points that reside on a given manifold. Trajectories between points on a manifold can then be described in terms of evolving semantic descriptions.

相關內容

With advancements in AI-generated images coming on a continuous basis, it is increasingly difficult to distinguish traditionally-sourced images (e.g., photos, artwork) from AI-generated ones. Previous detection methods study the generalization from a single generator to another in isolation. However, in reality, new generators are released on a streaming basis. We study generalization in this setting, training on N models and testing on the next (N+k), following the historical release dates of well-known generation methods. Furthermore, images increasingly consist of both real and generated components, for example through image inpainting. Thus, we extend this approach to pixel prediction, demonstrating strong performance using automatically-generated inpainted data. In addition, for settings where commercial models are not publicly available for automatic data generation, we evaluate if pixel detectors can be trained solely on whole synthetic images.

Trajectory sampling in the Frenet(road-aligned) frame, is one of the most popular methods for motion planning of autonomous vehicles. It operates by sampling a set of behavioural inputs, such as lane offset and forward speed, before solving a trajectory optimization problem conditioned on the sampled inputs. The sampling is handcrafted based on simple heuristics, does not adapt to driving scenarios, and is oblivious to the capabilities of downstream trajectory planners. In this paper, we propose an end-to-end learning of behavioural input distribution from expert demonstrations or in a self-supervised manner. Our core novelty lies in embedding a custom differentiable trajectory optimizer as a layer in neural networks, allowing us to update behavioural inputs by considering the optimizer's feedback. Moreover, our end-to-end approach also ensures that the learned behavioural inputs aid the convergence of the optimizer. We improve the state-of-the-art in the following aspects. First, we show that learned behavioural inputs substantially decrease collision rate while improving driving efficiency over handcrafted approaches. Second, our approach outperforms model predictive control methods based on sampling-based optimization.

This paper summarizes state-of-the-art results on data series processing with the emphasis on parallel and distributed data series indexes that exploit the computational power of modern computing platforms. The paper comprises a summary of the tutorial the author delivered at the 15th International Conference on Management of Digital EcoSystems (MEDES'23).

This letter proposes a scheme assisted by a reconfigurable intelligent surface (RIS) for efficient uplink traffic multiplexing between enhanced mobile broadband (eMBB) and ultra-reliable-low-latency communication (URLLC). The scheme determines two RIS configurations based only on the eMBB channel state information (CSI) available at the base station (BS). The first optimizes eMBB quality of service, while the second reduces eMBB interference in URLLC traffic by temporarily silencing the eMBB traffic. Numerical results demonstrate that this approach, relying solely on eMBB CSI and without BS coordination, can outperform the state-of-the-art preemptive puncturing by 4.9 times in terms of URLLC outage probability.

This paper studies the utility of techniques within uncertainty quantification, namely spectral projection and polynomial chaos expansion, in reducing sampling needs for characterizing acoustic metamaterial dispersion band responses given stochastic material properties and geometric defects. A novel method of encoding geometric defects in an interpretable, resolution independent is showcased in the formation of input space probability distributions. Orders of magnitude sampling reductions down to $\sim10^0$ and $\sim10^1$ are achieved in the 1D and 7D input space scenarios respectively while maintaining accurate output space probability distributions through combining Monte Carlo, quadrature rule, and sparse grid sampling with surrogate model fitting.

Low-light image enhancement tasks demand an appropriate balance among brightness, color, and illumination. While existing methods often focus on one aspect of the image without considering how to pay attention to this balance, which will cause problems of color distortion and overexposure etc. This seriously affects both human visual perception and the performance of high-level visual models. In this work, a novel synergistic structure is proposed which can balance brightness, color, and illumination more effectively. Specifically, the proposed method, so-called Joint Correcting and Refinement Network (JCRNet), which mainly consists of three stages to balance brightness, color, and illumination of enhancement. Stage 1: we utilize a basic encoder-decoder and local supervision mechanism to extract local information and more comprehensive details for enhancement. Stage 2: cross-stage feature transmission and spatial feature transformation further facilitate color correction and feature refinement. Stage 3: we employ a dynamic illumination adjustment approach to embed residuals between predicted and ground truth images into the model, adaptively adjusting illumination balance. Extensive experiments demonstrate that the proposed method exhibits comprehensive performance advantages over 21 state-of-the-art methods on 9 benchmark datasets. Furthermore, a more persuasive experiment has been conducted to validate our approach the effectiveness in downstream visual tasks (e.g., saliency detection). Compared to several enhancement models, the proposed method effectively improves the segmentation results and quantitative metrics of saliency detection. The source code will be available at //github.com/woshiyll/JCRNet.

In this paper, a new method is given for counting cycles in the Tanner graph of a (Type-I) quasi-cyclic (QC) low-density parity-check (LDPC) code which the complexity mainly is dependent on the base matrix, independent from the CPM-size of the constructed code. Interestingly, for large CPM-sizes, in comparison of the existing methods, this algorithm is the first approach which efficiently counts the cycles in the Tanner graphs of QC-LDPC codes. In fact, the algorithm recursively counts the cycles in the parity-check matrix column-by-column by finding all non-isomorph tailless backtrackless closed (TBC) walks in the base graph and enumerating theoretically their corresponding cycles in the same equivalent class. Moreover, this approach can be modified in few steps to find the cycle distributions of a class of LDPC codes based on Affine permutation matrices (APM-LDPC codes). Interestingly, unlike the existing methods which count the cycles up to $2g-2$, where $g$ is the girth, the proposed algorithm can be used to enumerate the cycles of arbitrary length in the Tanner graph. Moreover, the proposed cycle searching algorithm improves upon various previously known methods, in terms of computational complexity and memory requirements.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司