Training a Large Visual Language Model (LVLM) from scratch, like GPT-4, is resource-intensive. Our paper proposes an alternative method called LMEye, a play-plug-in Interactive Perception Network for Large Language Models (LLMs), aiming to improve the accuracy of image understanding for the LVLM. Previous methods that infuse visual information into LLMs utilize a static visual mapping network, but lack dynamic interaction between the LLMs and visual information. LMEye addresses this issue by allowing the LLM to incorporate the visual information that aligned with human instruction. Specifically, the LMEye network consists of a static visual mapping network to provide the basic perception of an image to LLMs. Then, it also contains additional linear layers responsible for acquiring requests from LLMs, decomposing image features, and transmitting the interleaved information to LLMs, respectively. In this way, LLMs act to be in charge of understanding human instructions, sending it to the interactive perception network, and generating the response based on the interleaved multimodal information. We evaluate LMEye through extensive experiments on multimodal question answering and reasoning tasks, demonstrating that it significantly improves the zero-shot performance of LLMs on multimodal tasks compared to previous methods.
Recently, text-to-image diffusion models have shown remarkable capabilities in creating realistic images from natural language prompts. However, few works have explored using these models for semantic localization or grounding. In this work, we explore how an off-the-shelf text-to-image diffusion model, trained without exposure to localization information, can ground various semantic phrases without segmentation-specific re-training. We introduce an inference time optimization process capable of generating segmentation masks conditioned on natural language prompts. Our proposal, Peekaboo, is a first-of-its-kind zero-shot, open-vocabulary, unsupervised semantic grounding technique leveraging diffusion models without any training. We evaluate Peekaboo on the Pascal VOC dataset for unsupervised semantic segmentation and the RefCOCO dataset for referring segmentation, showing results competitive with promising results. We also demonstrate how Peekaboo can be used to generate images with transparency, even though the underlying diffusion model was only trained on RGB images - which to our knowledge we are the first to attempt. Please see our project page, including our code: //ryanndagreat.github.io/peekaboo
We propose DeepIPC, an end-to-end autonomous driving model that handles both perception and control tasks in driving a vehicle. The model consists of two main parts, perception and controller modules. The perception module takes an RGBD image to perform semantic segmentation and bird's eye view (BEV) semantic mapping along with providing their encoded features. Meanwhile, the controller module processes these features with the measurement of GNSS locations and angular speed to estimate waypoints that come with latent features. Then, two different agents are used to translate waypoints and latent features into a set of navigational controls to drive the vehicle. The model is evaluated by predicting driving records and performing automated driving under various conditions in real environments. The experimental results show that DeepIPC achieves the best drivability and multi-task performance even with fewer parameters compared to the other models. Codes will be published at //github.com/oskarnatan/DeepIPC.
Heterophily has been considered as an issue that hurts the performance of Graph Neural Networks (GNNs). To address this issue, some existing work uses a graph-level weighted fusion of the information of multi-hop neighbors to include more nodes with homophily. However, the heterophily might differ among nodes, which requires to consider the local topology. Motivated by it, we propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module. For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information. Moreover, we provide theoretical analysis on the effectiveness of LocalSim representing node homophily on synthetic graphs. Extensive evaluations over real benchmark datasets show that our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs. Meanwhile, the plug-and-play model can significantly boost the performance of existing GNNs. Our code is provided at //github.com/draym28/LSGNN.
Segmentation-based methods have achieved great success for arbitrary shape text detection. However, separating neighboring text instances is still one of the most challenging problems due to the complexity of texts in scene images. In this paper, we propose an innovative Kernel Proposal Network (dubbed KPN) for arbitrary shape text detection. The proposed KPN can separate neighboring text instances by classifying different texts into instance-independent feature maps, meanwhile avoiding the complex aggregation process existing in segmentation-based arbitrary shape text detection methods. To be concrete, our KPN will predict a Gaussian center map for each text image, which will be used to extract a series of candidate kernel proposals (i.e., dynamic convolution kernel) from the embedding feature maps according to their corresponding keypoint positions. To enforce the independence between kernel proposals, we propose a novel orthogonal learning loss (OLL) via orthogonal constraints. Specifically, our kernel proposals contain important self-information learned by network and location information by position embedding. Finally, kernel proposals will individually convolve all embedding feature maps for generating individual embedded maps of text instances. In this way, our KPN can effectively separate neighboring text instances and improve the robustness against unclear boundaries. To our knowledge, our work is the first to introduce the dynamic convolution kernel strategy to efficiently and effectively tackle the adhesion problem of neighboring text instances in text detection. Experimental results on challenging datasets verify the impressive performance and efficiency of our method. The code and model are available at //github.com/GXYM/KPN.
Despite the remarkable performance of text-to-image diffusion models in image generation tasks, recent studies have raised the issue that generated images sometimes cannot capture the intended semantic contents of the text prompts, which phenomenon is often called semantic misalignment. To address this, here we present a novel energy-based model (EBM) framework. Specifically, we first formulate EBMs of latent image representations and text embeddings in each cross-attention layer of the denoising autoencoder. Then, we obtain the gradient of the log posterior of context vectors, which can be updated and transferred to the subsequent cross-attention layer, thereby implicitly minimizing a nested hierarchy of energy functions. Our latent EBMs further allow zero-shot compositional generation as a linear combination of cross-attention outputs from different contexts. Using extensive experiments, we demonstrate that the proposed method is highly effective in handling various image generation tasks, including multi-concept generation, text-guided image inpainting, and real and synthetic image editing.
Speech separation remains an important area of multi-speaker signal processing. Deep neural network (DNN) models have attained the best performance on many speech separation benchmarks. Some of these models can take significant time to train and have high memory requirements. Previous work has proposed shortening training examples to address these issues but the impact of this on model performance is not yet well understood. In this work, the impact of applying these training signal length (TSL) limits is analysed for two speech separation models: SepFormer, a transformer model, and Conv-TasNet, a convolutional model. The WJS0-2Mix, WHAMR and Libri2Mix datasets are analysed in terms of signal length distribution and its impact on training efficiency. It is demonstrated that, for specific distributions, applying specific TSL limits results in better performance. This is shown to be mainly due to randomly sampling the start index of the waveforms resulting in more unique examples for training. A SepFormer model trained using a TSL limit of 4.42s and dynamic mixing (DM) is shown to match the best-performing SepFormer model trained with DM and unlimited signal lengths. Furthermore, the 4.42s TSL limit results in a 44% reduction in training time with WHAMR.
Interpreting the meaning of legal open-textured terms is a key task of legal professionals. An important source for this interpretation is how the term was applied in previous court cases. In this paper, we evaluate the performance of GPT-4 in generating factually accurate, clear and relevant explanations of terms in legislation. We compare the performance of a baseline setup, where GPT-4 is directly asked to explain a legal term, to an augmented approach, where a legal information retrieval module is used to provide relevant context to the model, in the form of sentences from case law. We found that the direct application of GPT-4 yields explanations that appear to be of very high quality on their surface. However, detailed analysis uncovered limitations in terms of the factual accuracy of the explanations. Further, we found that the augmentation leads to improved quality, and appears to eliminate the issue of hallucination, where models invent incorrect statements. These findings open the door to the building of systems that can autonomously retrieve relevant sentences from case law and condense them into a useful explanation for legal scholars, educators or practicing lawyers alike.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.