Interpreting the meaning of legal open-textured terms is a key task of legal professionals. An important source for this interpretation is how the term was applied in previous court cases. In this paper, we evaluate the performance of GPT-4 in generating factually accurate, clear and relevant explanations of terms in legislation. We compare the performance of a baseline setup, where GPT-4 is directly asked to explain a legal term, to an augmented approach, where a legal information retrieval module is used to provide relevant context to the model, in the form of sentences from case law. We found that the direct application of GPT-4 yields explanations that appear to be of very high quality on their surface. However, detailed analysis uncovered limitations in terms of the factual accuracy of the explanations. Further, we found that the augmentation leads to improved quality, and appears to eliminate the issue of hallucination, where models invent incorrect statements. These findings open the door to the building of systems that can autonomously retrieve relevant sentences from case law and condense them into a useful explanation for legal scholars, educators or practicing lawyers alike.
ModSecurity is widely recognized as the standard open-source Web Application Firewall (WAF), maintained by the OWASP Foundation. It detects malicious requests by matching them against the Core Rule Set, identifying well-known attack patterns. Each rule in the CRS is manually assigned a weight, based on the severity of the corresponding attack, and a request is detected as malicious if the sum of the weights of the firing rules exceeds a given threshold. In this work, we show that this simple strategy is largely ineffective for detecting SQL injection (SQLi) attacks, as it tends to block many legitimate requests, while also being vulnerable to adversarial SQLi attacks, i.e., attacks intentionally manipulated to evade detection. To overcome these issues, we design a robust machine learning model, named AdvModSec, which uses the CRS rules as input features, and it is trained to detect adversarial SQLi attacks. Our experiments show that AdvModSec, being trained on the traffic directed towards the protected web services, achieves a better trade-off between detection and false positive rates, improving the detection rate of the vanilla version of ModSecurity with CRS by 21%. Moreover, our approach is able to improve its adversarial robustness against adversarial SQLi attacks by 42%, thereby taking a step forward towards building more robust and trustworthy WAFs.
Fully homomorphic encryption (FHE) is in the spotlight as a definitive solution for privacy, but the high computational overhead of FHE poses a challenge to its practical adoption. Although prior studies have attempted to design ASIC accelerators to mitigate the overhead, their designs require excessive amounts of chip resources (e.g., areas) to contain and process massive data for FHE operations. We propose CiFHER, a chiplet-based FHE accelerator with a resizable structure, to tackle the challenge with a cost-effective multi-chip module (MCM) design. First, we devise a flexible architecture of a chiplet core whose configuration can be adjusted to conform to the global organization of chiplets and design constraints. The distinctive feature of our core is a recomposable functional unit providing varying computational throughput for number-theoretic transform (NTT), the most dominant function in FHE. Then, we establish generalized data mapping methodologies to minimize the network overhead when organizing the chips into the MCM package in a tiled manner, which becomes a significant bottleneck due to the technology constraints of MCMs. Also, we analyze the effectiveness of various algorithms, including a novel limb duplication algorithm, on the MCM architecture. A detailed evaluation shows that a CiFHER package composed of 4 to 64 compact chiplets provides performance comparable to state-of-the-art monolithic ASIC FHE accelerators with significantly lower package-wide power consumption while reducing the area of a single core to as small as 4.28mm$^2$.
In this work, we propose a new transformer-based regularization to better localize objects for Weakly supervised semantic segmentation (WSSS). In image-level WSSS, Class Activation Map (CAM) is adopted to generate object localization as pseudo segmentation labels. To address the partial activation issue of the CAMs, consistency regularization is employed to maintain activation intensity invariance across various image augmentations. However, such methods ignore pair-wise relations among regions within each CAM, which capture context and should also be invariant across image views. To this end, we propose a new all-pairs consistency regularization (ACR). Given a pair of augmented views, our approach regularizes the activation intensities between a pair of augmented views, while also ensuring that the affinity across regions within each view remains consistent. We adopt vision transformers as the self-attention mechanism naturally embeds pair-wise affinity. This enables us to simply regularize the distance between the attention matrices of augmented image pairs. Additionally, we introduce a novel class-wise localization method that leverages the gradients of the class token. Our method can be seamlessly integrated into existing WSSS methods using transformers without modifying the architectures. We evaluate our method on PASCAL VOC and MS COCO datasets. Our method produces noticeably better class localization maps (67.3% mIoU on PASCAL VOC train), resulting in superior WSSS performances.
Logic-based approaches to AI have the advantage that their behavior can in principle be explained with the help of proofs of the computed consequences. For ontologies based on Description Logic (DL), we have put this advantage into practice by showing how proofs for consequences derived by DL reasoners can be computed and displayed in a user-friendly way. However, these methods are insufficient in applications where also numerical reasoning is relevant. The present paper considers proofs for DLs extended with concrete domains (CDs) based on the rational numbers, which leave reasoning tractable if integrated into the lightweight DL $\mathcal{E}\hspace{-0.1em}\mathcal{L}_\bot$. Since no implemented DL reasoner supports these CDs, we first develop reasoning procedures for them, and show how they can be combined with reasoning approaches for pure DLs, both for $\mathcal{E}\hspace{-0.1em}\mathcal{L}_\bot$ and the more expressive DL $\mathcal{ALC}$. These procedures are designed such that it is easy to extract proofs from them. We show how the extracted CD proofs can be combined with proofs on the DL side into integrated proofs that explain both the DL and the CD reasoning.
Depth estimation aims to predict dense depth maps. In autonomous driving scenes, sparsity of annotations makes the task challenging. Supervised models produce concave objects due to insufficient structural information. They overfit to valid pixels and fail to restore spatial structures. Self-supervised methods are proposed for the problem. Their robustness is limited by pose estimation, leading to erroneous results in natural scenes. In this paper, we propose a supervised framework termed Diffusion-Augmented Depth Prediction (DADP). We leverage the structural characteristics of diffusion model to enforce depth structures of depth models in a plug-and-play manner. An object-guided integrality loss is also proposed to further enhance regional structure integrality by fetching objective information. We evaluate DADP on three driving benchmarks and achieve significant improvements in depth structures and robustness. Our work provides a new perspective on depth estimation with sparse annotations in autonomous driving scenes.
We describe a "top down" approach for automated theorem proving (ATP). Researchers might usefully investigate the forms of the theorems mathematicians use in practice, carefully examine how they differ and are proved in practice, and code all relevant domain concepts. These concepts encode a large portion of the knowledge in any domain. Furthermore, researchers should write programs that produce proofs of the kind that human mathematicians write (and publish); this means proofs that might sometimes have mistakes; and this means making inferences that are sometimes invalid. This approach is meant to contrast with the historically dominant ~bottom up" approach: coding fundamental types (typically sets), axioms and rules for (valid) inference, and building up from this foundation to the theorems of mathematical practice and to their outstanding questions. It is an important fact that the actual proofs that mathematicians publish in math journals do not look like the formalized proofs of Russell & Whitehead's Principia Mathematica (or modern computer systems like Lean that automate some of this formalization). We believe some "lack of rigor" (in mathematical practice) is human-like, and can and should be leveraged for ATP.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.
Manually labeling objects by tracing their boundaries is a laborious process. In Polygon-RNN++ the authors proposed Polygon-RNN that produces polygonal annotations in a recurrent manner using a CNN-RNN architecture, allowing interactive correction via humans-in-the-loop. We propose a new framework that alleviates the sequential nature of Polygon-RNN, by predicting all vertices simultaneously using a Graph Convolutional Network (GCN). Our model is trained end-to-end. It supports object annotation by either polygons or splines, facilitating labeling efficiency for both line-based and curved objects. We show that Curve-GCN outperforms all existing approaches in automatic mode, including the powerful PSP-DeepLab and is significantly more efficient in interactive mode than Polygon-RNN++. Our model runs at 29.3ms in automatic, and 2.6ms in interactive mode, making it 10x and 100x faster than Polygon-RNN++.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.