亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the numerical approximation of integrals over $\mathbb{R}^d$ equipped with the standard Gaussian measure $\gamma$ for integrands belonging to the Gaussian-weighted Sobolev spaces $W^\alpha_p(\mathbb{R}^d, \gamma)$ of mixed smoothness $\alpha \in \mathbb{N}$ for $1 < p < \infty$. We prove the asymptotic order of the convergence of optimal quadratures based on $n$ integration nodes and propose a novel method for constructing asymptotically optimal quadratures. As for related problems, we establish by a similar technique the asymptotic order of the linear, Kolmogorov and sampling $n$-widths in the Gaussian-weighted space $L_q(\mathbb{R}^d, \gamma)$ of the unit ball of $W^\alpha_p(\mathbb{R}^d, \gamma)$ for $1 \leq q < p < \infty$ and $q=p=2$.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

The quantitative characterization of the evolution of the error distribution (as the step-size tends to zero) is a fundamental problem in the analysis of stochastic numerical method. In this paper, we answer this problem by proving that the error of numerical method for linear stochastic differential equation satisfies the limit theorems and large deviation principle. To the best of our knowledge, this is the first result on the quantitative characterization of the evolution of the error distribution of stochastic numerical method. As an application, we provide a new perspective to explain the superiority of symplectic methods for stochastic Hamiltonian systems in the long-time computation. To be specific, by taking the linear stochastic oscillator as the test equation, we show that in the long-time computation, the probability that the error deviates from the typical value is smaller for the symplectic methods than that for the non-symplectic methods, which reveals that the stochastic symplectic methods are more stable than non-symplectic methods.

Given a property (graph class) $\Pi$, a graph $G$, and an integer $k$, the \emph{$\Pi$-completion} problem consists in deciding whether we can turn $G$ into a graph with the property $\Pi$ by adding at most $k$ edges to $G$. The $\Pi$-completion problem is known to be NP-hard for general graphs when $\Pi$ is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem %when $\Pi$ is the class of proper interval graphs (PIG) within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

The paper aims to study the performance of the amplitude-based model \newline $\widehat{\mathbf x} \in {\rm argmin}_{{\mathbf x}\in \mathbb{C}^d}\sum_{j=1}^m\left(|\langle {\mathbf a}_j,{\mathbf x}\rangle|-b_j\right)^2$, where $b_j:=|\langle {\mathbf a}_j,{\mathbf x}_0\rangle|+\eta_j$ and ${\mathbf x}_0\in \mathbb{C}^d$ is a target signal. The model is raised in phase retrieval as well as in absolute value rectification neural networks. Many efficient algorithms have been developed to solve it in the past decades. {However, there are very few results available regarding the estimation performance in the complex case under noisy conditions.} In this paper, {we present a theoretical guarantee on the amplitude-based model for the noisy complex phase retrieval problem}. Specifically, we show that $\min_{\theta\in[0,2\pi)}\|\widehat{\mathbf x}-\exp(\mathrm{i}\theta)\cdot{\mathbf x}_0\|_2 \lesssim \frac{\|{\mathbf \eta}\|_2}{\sqrt{m}}$ holds with high probability provided the measurement vectors ${\mathbf a}_j\in \mathbb{C}^d,$ $j=1,\ldots,m,$ are {i.i.d.} complex sub-Gaussian random vectors and $m\gtrsim d$. Here ${\mathbf \eta}=(\eta_1,\ldots,\eta_m)\in \mathbb{R}^m$ is the noise vector without any assumption on the distribution. Furthermore, we prove that the reconstruction error is sharp. For the case where the target signal ${\mathbf x}_0\in \mathbb{C}^{d}$ is sparse, we establish a similar result for the nonlinear constrained $\ell_1$ minimization model. { To accomplish this, we leverage a strong version of restricted isometry property for an operator on the space of simultaneous low-rank and sparse matrices.}

For terminal value problems of fractional differential equations of order $\alpha \in (0,1)$ that use Caputo derivatives, shooting methods are a well developed and investigated approach. Based on recently established analytic properties of such problems, we develop a new technique to select the required initial values that solves such shooting problems quickly and accurately. Numerical experiments indicate that this new proportional secting technique converges very quickly and accurately to the solution. Run time measurements indicate a speedup factor of between 4 and 10 when compared to the standard bisection method.

Partial differential equations (PDEs) with uncertain or random inputs have been considered in many studies of uncertainty quantification. In forward uncertainty quantification, one is interested in analyzing the stochastic response of the PDE subject to input uncertainty, which usually involves solving high-dimensional integrals of the PDE output over a sequence of stochastic variables. In practical computations, one typically needs to discretize the problem in several ways: approximating an infinite-dimensional input random field with a finite-dimensional random field, spatial discretization of the PDE using, e.g., finite elements, and approximating high-dimensional integrals using cubatures such as quasi-Monte Carlo methods. In this paper, we focus on the error resulting from dimension truncation of an input random field. We show how Taylor series can be used to derive theoretical dimension truncation rates for a wide class of problems and we provide a simple checklist of conditions that a parametric mathematical model needs to satisfy in order for our dimension truncation error bound to hold. Some of the novel features of our approach include that our results are applicable to non-affine parametric operator equations, dimensionally-truncated conforming finite element discretized solutions of parametric PDEs, and even compositions of PDE solutions with smooth nonlinear quantities of interest. As a specific application of our method, we derive an improved dimension truncation error bound for elliptic PDEs with lognormally parameterized diffusion coefficients. Numerical examples support our theoretical findings.

For a given function $F$ from $\mathbb F_{p^n}$ to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to $F$ is a very important and interesting problem. For example, K\"olsch \cite{KOL21} showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function $F(x)=x^{2^i+1}$ and $F(x)=x^3+{\rm Tr}(x^9)$ over $\mathbb F_{2^n}$, Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) \cite{BCP06, BCL09FFTA} found functions which are CCZ-equivalent but EA-inequivalent to $F$. In this paper, when a given function $F$ has a component function which has a linear structure, we present functions which are CCZ-equivalent to $F$, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to $F$. As a consequence, for every quadratic function $F$ on $\mathbb F_{2^n}$ ($n\geq 4$) with nonlinearity $>0$ and differential uniformity $\leq 2^{n-3}$, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to $F$. Also for every non-planar quadratic function on $\mathbb F_{p^n}$ $(p>2, n\geq 4)$ with $|\mathcal W_F|\leq p^{n-1}$ and differential uniformity $\leq p^{n-3}$, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to $F$.

The hazard function represents one of the main quantities of interest in the analysis of survival data. We propose a general approach for modelling the dynamics of the hazard function using systems of autonomous ordinary differential equations (ODEs). This modelling approach can be used to provide qualitative and quantitative analyses of the evolution of the hazard function over time. Our proposal capitalises on the extensive literature of ODEs which, in particular, allow for establishing basic rules or laws on the dynamics of the hazard function via the use of autonomous ODEs. We show how to implement the proposed modelling framework in cases where there is an analytic solution to the system of ODEs or where an ODE solver is required to obtain a numerical solution. We focus on the use of a Bayesian modelling approach, but the proposed methodology can also be coupled with maximum likelihood estimation. A simulation study is presented to illustrate the performance of these models and the interplay of sample size and censoring. Two case studies using real data are presented to illustrate the use of the proposed approach and to highlight the interpretability of the corresponding models. We conclude with a discussion on potential extensions of our work and strategies to include covariates into our framework.

An $n$-vertex $m$-edge graph is \emph{$k$-vertex connected} if it cannot be disconnected by deleting less than $k$ vertices. After more than half a century of intensive research, the result by [Li et al. STOC'21] finally gave a \emph{randomized} algorithm for checking $k$-connectivity in near-optimal $\widehat{O}(m)$ time. (We use $\widehat{O}(\cdot)$ to hide an $n^{o(1)}$ factor.) Deterministic algorithms, unfortunately, have remained much slower even if we assume a linear-time max-flow algorithm: they either require at least $\Omega(mn)$ time [Even'75; Henzinger Rao and Gabow, FOCS'96; Gabow, FOCS'00] or assume that $k=o(\sqrt{\log n})$ [Saranurak and Yingchareonthawornchai, FOCS'22]. We show a \emph{deterministic} algorithm for checking $k$-vertex connectivity in time proportional to making $\widehat{O}(k^{2})$ max-flow calls, and, hence, in $\widehat{O}(mk^{2})$ time using the deterministic max-flow algorithm by [Brand et al. FOCS'23]. Our algorithm gives the first almost-linear-time bound for all $k$ where $\sqrt{\log n}\le k\le n^{o(1)}$ and subsumes up to a sub polynomial factor the long-standing state-of-the-art algorithm by [Even'75] which requires $O(n+k^{2})$ max-flow calls. Our key technique is a deterministic algorithm for terminal reduction for vertex connectivity: given a terminal set separated by a vertex mincut, output either a vertex mincut or a smaller terminal set that remains separated by a vertex mincut. We also show a deterministic $(1+\epsilon)$-approximation algorithm for vertex connectivity that makes $O(n/\epsilon^2)$ max-flow calls, improving the bound of $O(n^{1.5})$ max-flow calls in the exact algorithm of [Gabow, FOCS'00]. The technique is based on Ramanujan graphs.

Metric spaces $(X, d)$ are ubiquitous objects in mathematics and computer science that allow for capturing (pairwise) distance relationships $d(x, y)$ between points $x, y \in X$. Because of this, it is natural to ask what useful generalizations there are of metric spaces for capturing "$k$-wise distance relationships" $d(x_1, \ldots, x_k)$ among points $x_1, \ldots, x_k \in X$ for $k > 2$. To that end, G\"{a}hler (Math. Nachr., 1963) (and perhaps others even earlier) defined $k$-metric spaces, which generalize metric spaces, and most notably generalize the triangle inequality $d(x_1, x_2) \leq d(x_1, y) + d(y, x_2)$ to the "simplex inequality" $d(x_1, \ldots, x_k) \leq \sum_{i=1}^k d(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_k)$. (The definition holds for any fixed $k \geq 2$, and a $2$-metric space is just a (standard) metric space.) In this work, we introduce strong $k$-metric spaces, $k$-metric spaces that satisfy a topological condition stronger than the simplex inequality, which makes them "behave nicely." We also introduce coboundary $k$-metrics, which generalize $\ell_p$ metrics (and in fact all finite metric spaces induced by norms) and minimum bounding chain $k$-metrics, which generalize shortest path metrics (and capture all strong $k$-metrics). Using these definitions, we prove analogs of a number of fundamental results about embedding finite metric spaces including Fr\'{e}chet embedding (isometric embedding into $\ell_{\infty}$) and isometric embedding of all tree metrics into $\ell_1$. We also study relationships between families of (strong) $k$-metrics, and show that natural quantities, like simplex volume, are strong $k$-metrics.

北京阿比特科技有限公司