Sampling from Gibbs distributions $p(x) \propto \exp(-V(x)/\varepsilon)$ and computing their log-partition function are fundamental tasks in statistics, machine learning, and statistical physics. However, while efficient algorithms are known for convex potentials $V$, the situation is much more difficult in the non-convex case, where algorithms necessarily suffer from the curse of dimensionality in the worst case. For optimization, which can be seen as a low-temperature limit of sampling, it is known that smooth functions $V$ allow faster convergence rates. Specifically, for $m$-times differentiable functions in $d$ dimensions, the optimal rate for algorithms with $n$ function evaluations is known to be $O(n^{-m/d})$, where the constant can potentially depend on $m, d$ and the function to be optimized. Hence, the curse of dimensionality can be alleviated for smooth functions at least in terms of the convergence rate. Recently, it has been shown that similarly fast rates can also be achieved with polynomial runtime $O(n^{3.5})$, where the exponent $3.5$ is independent of $m$ or $d$. Hence, it is natural to ask whether similar rates for sampling and log-partition computation are possible, and whether they can be realized in polynomial time with an exponent independent of $m$ and $d$. We show that the optimal rates for sampling and log-partition computation are sometimes equal and sometimes faster than for optimization. We then analyze various polynomial-time sampling algorithms, including an extension of a recent promising optimization approach, and find that they sometimes exhibit interesting behavior but no near-optimal rates. Our results also give further insights on the relation between sampling, log-partition, and optimization problems.
The subgradient method is one of the most fundamental algorithmic schemes for nonsmooth optimization. The existing complexity and convergence results for this algorithm are mainly derived for Lipschitz continuous objective functions. In this work, we first extend the typical complexity results for the subgradient method to convex and weakly convex minimization without assuming Lipschitz continuity. Specifically, we establish $\mathcal{O}(1/\sqrt{T})$ bound in terms of the suboptimality gap ``$f(x) - f^*$'' for convex case and $\mathcal{O}(1/{T}^{1/4})$ bound in terms of the gradient of the Moreau envelope function for weakly convex case. Furthermore, we provide convergence results for non-Lipschitz convex and weakly convex objective functions using proper diminishing rules on the step sizes. In particular, when $f$ is convex, we show $\mathcal{O}(\log(k)/\sqrt{k})$ rate of convergence in terms of the suboptimality gap. With an additional quadratic growth condition, the rate is improved to $\mathcal{O}(1/k)$ in terms of the squared distance to the optimal solution set. When $f$ is weakly convex, asymptotic convergence is derived. The central idea is that the dynamics of properly chosen step sizes rule fully controls the movement of the subgradient method, which leads to boundedness of the iterates, and then a trajectory-based analysis can be conducted to establish the desired results. To further illustrate the wide applicability of our framework, we extend the complexity results to the truncated subgradient, the stochastic subgradient, the incremental subgradient, and the proximal subgradient methods for non-Lipschitz functions.
According to the fundamental theorems of welfare economics, any competitive equilibrium is Pareto efficient. Unfortunately, competitive equilibrium prices only exist under strong assumptions such as perfectly divisible goods and convex preferences. In many real-world markets, participants have non-convex preferences and the allocation problem needs to consider complex constraints. Electricity markets are a prime example, but similar problems appear in many real-world markets, which has led to a growing literature in market design. Power markets use heuristic pricing rules based on the dual of a relaxed allocation problem today. With increasing levels of renewables, these rules have come under scrutiny as they lead to high out-of-market side-payments to some participants and to inadequate congestion signals. We show that existing pricing heuristics optimize specific design goals that can be conflicting. The trade-offs can be substantial, and we establish that the design of pricing rules is fundamentally a multi-objective optimization problem addressing different incentives. In addition to traditional multi-objective optimization techniques using weighing of individual objectives, we introduce a novel parameter-free pricing rule that minimizes incentives for market participants to deviate locally. Our theoretical and experimental findings show how the new pricing rule capitalizes on the upsides of existing pricing rules under scrutiny today. It leads to prices that incur low make-whole payments while providing adequate congestion signals and low lost opportunity costs. Our suggested pricing rule does not require weighing of objectives, it is computationally scalable, and balances trade-offs in a principled manner, addressing an important policy issue in electricity markets.
We extend the theory of logarithmic Voronoi cells to Gaussian statistical models. In general, a logarithmic Voronoi cell at a point on a Gaussian model is a convex set contained in its log-normal spectrahedron. We show that for models of ML degree one and linear covariance models the two sets coincide. In particular, they are equal for both directed and undirected graphical models. We introduce decomposition theory of logarithmic Voronoi cells for the latter family. We also study covariance models, for which logarithmic Voronoi cells are, in general, strictly contained in log-normal spectrahedra. We give an explicit description of logarithmic Voronoi cells for the bivariate correlation model and show that they are semi-algebraic sets. Finally, we state a conjecture that logarithmic Voronoi cells for unrestricted correlation models are not semi-algebraic.
The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in \{0, 1\}^n$ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of $x$. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log^2 n)$ for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.
We are interested in the nonparametric estimation of the probability density of price returns, using the kernel approach. The output of the method heavily relies on the selection of a bandwidth parameter. Many selection methods have been proposed in the statistical literature. We put forward an alternative selection method based on a criterion coming from information theory and from the physics of complex systems: the bandwidth to be selected maximizes a new measure of complexity, with the aim of avoiding both overfitting and underfitting. We review existing methods of bandwidth selection and show that they lead to contradictory conclusions regarding the complexity of the probability distribution of price returns. This has also some striking consequences in the evaluation of the relevance of the efficient market hypothesis. We apply these methods to real financial data, focusing on the Bitcoin.
In image compression, with recent advances in generative modeling, the existence of a trade-off between the rate and the perceptual quality has been brought to light, where the perception is measured by the closeness of the output distribution to the source. This leads to the question: how does a perception constraint impact the trade-off between the rate and traditional distortion constraints, typically quantified by a single-letter distortion measure? We consider the compression of a memoryless source $X$ in the presence of memoryless side information $Z,$ studied by Wyner and Ziv, but elucidate the impact of a perfect realism constraint, which requires the output distribution to match the source distribution. We consider two cases: when $Z$ is available only at the decoder or at both the encoder and the decoder. The rate-distortion trade-off with perfect realism is characterized for sources on general alphabets when infinite common randomness is available between the encoder and the decoder. We show that, similarly to traditional source coding with side information, the two cases are equivalent when $X$ and $Z$ are jointly Gaussian under the squared error distortion measure. We also provide a general inner bound in the case of limited common randomness.
PDE solutions are numerically represented by basis functions. Classical methods employ pre-defined bases that encode minimum desired PDE properties, which naturally cause redundant computations. What are the best bases to numerically represent PDE solutions? From the analytical perspective, the Kolmogorov $n$-width is a popular criterion for selecting representative basis functions. From the Bayesian computation perspective, the concept of optimality selects the modes that, when known, minimize the variance of the conditional distribution of the rest of the solution. We show that these two definitions of optimality are equivalent. Numerically, both criteria reduce to solving a Singular Value Decomposition (SVD), a procedure that can be made numerically efficient through randomized sampling. We demonstrate computationally the effectiveness of the basis functions so obtained on several linear and nonlinear problems. In all cases, the optimal accuracy is achieved with a small set of basis functions.
Accurate and efficient estimation of rare events probabilities is of significant importance, since often the occurrences of such events have widespread impacts. The focus in this work is on precisely quantifying these probabilities, often encountered in reliability analysis of complex engineering systems, based on an introduced framework termed Approximate Sampling Target with Post-processing Adjustment (ASTPA), which herein is integrated with and supported by gradient-based Hamiltonian Markov Chain Monte Carlo (HMCMC) methods. The developed techniques in this paper are applicable from low- to high-dimensional stochastic spaces, and the basic idea is to construct a relevant target distribution by weighting the original random variable space through a one-dimensional output likelihood model, using the limit-state function. To sample from this target distribution, we exploit HMCMC algorithms, a family of MCMC methods that adopts physical system dynamics, rather than solely using a proposal probability distribution, to generate distant sequential samples, and we develop a new Quasi-Newton mass preconditioned HMCMC scheme (QNp-HMCMC), which is particularly efficient and suitable for high-dimensional spaces. To eventually compute the rare event probability, an original post-sampling step is devised using an inverse importance sampling procedure based on the already obtained samples. The statistical properties of the estimator are analyzed as well, and the performance of the proposed methodology is examined in detail and compared against Subset Simulation in a series of challenging low- and high-dimensional problems.
A nonlinear sea-ice problem is considered in a least-squares finite element setting. The corresponding variational formulation approximating simultaneously the stress tensor and the velocity is analysed. In particular, the least-squares functional is coercive and continuous in an appropriate solution space and this proves the well-posedness of the problem. As the method does not require a compatibility condition between the finite element space, the formulation allows the use of piecewise polynomial spaces of the same approximation order for both the stress and the velocity approximations. A Newton-type iterative method is used to linearize the problem and numerical tests are provided to illustrate the theory.
We give query complexity lower bounds for convex optimization and the related feasibility problem. We show that quadratic memory is necessary to achieve the optimal oracle complexity for first-order convex optimization. In particular, this shows that center-of-mass cutting-planes algorithms in dimension $d$ which use $\tilde O(d^2)$ memory and $\tilde O(d)$ queries are Pareto-optimal for both convex optimization and the feasibility problem, up to logarithmic factors. Precisely, we prove that to minimize $1$-Lipschitz convex functions over the unit ball to $1/d^4$ accuracy, any deterministic first-order algorithms using at most $d^{2-\delta}$ bits of memory must make $\tilde\Omega(d^{1+\delta/3})$ queries, for any $\delta\in[0,1]$. For the feasibility problem, in which an algorithm only has access to a separation oracle, we show a stronger trade-off: for at most $d^{2-\delta}$ memory, the number of queries required is $\tilde\Omega(d^{1+\delta})$. This resolves a COLT 2019 open problem of Woodworth and Srebro.