亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

According to the fundamental theorems of welfare economics, any competitive equilibrium is Pareto efficient. Unfortunately, competitive equilibrium prices only exist under strong assumptions such as perfectly divisible goods and convex preferences. In many real-world markets, participants have non-convex preferences and the allocation problem needs to consider complex constraints. Electricity markets are a prime example, but similar problems appear in many real-world markets, which has led to a growing literature in market design. Power markets use heuristic pricing rules based on the dual of a relaxed allocation problem today. With increasing levels of renewables, these rules have come under scrutiny as they lead to high out-of-market side-payments to some participants and to inadequate congestion signals. We show that existing pricing heuristics optimize specific design goals that can be conflicting. The trade-offs can be substantial, and we establish that the design of pricing rules is fundamentally a multi-objective optimization problem addressing different incentives. In addition to traditional multi-objective optimization techniques using weighing of individual objectives, we introduce a novel parameter-free pricing rule that minimizes incentives for market participants to deviate locally. Our theoretical and experimental findings show how the new pricing rule capitalizes on the upsides of existing pricing rules under scrutiny today. It leads to prices that incur low make-whole payments while providing adequate congestion signals and low lost opportunity costs. Our suggested pricing rule does not require weighing of objectives, it is computationally scalable, and balances trade-offs in a principled manner, addressing an important policy issue in electricity markets.

相關內容

Many real-world optimization problems contain unknown parameters that must be predicted prior to solving. To train the predictive machine learning (ML) models involved, the commonly adopted approach focuses on maximizing predictive accuracy. However, this approach does not always lead to the minimization of the downstream task loss. Decision-focused learning (DFL) is a recently proposed paradigm whose goal is to train the ML model by directly minimizing the task loss. However, state-of-the-art DFL methods are limited by the assumptions they make about the structure of the optimization problem (e.g., that the problem is linear) and by the fact that can only predict parameters that appear in the objective function. In this work, we address these limitations by instead predicting \textit{distributions} over parameters and adopting score function gradient estimation (SFGE) to compute decision-focused updates to the predictive model, thereby widening the applicability of DFL. Our experiments show that by using SFGE we can: (1) deal with predictions that occur both in the objective function and in the constraints; and (2) effectively tackle two-stage stochastic optimization problems.

This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.

It is well known that the Euler method for approximating the solutions of a random ordinary differential equation $\mathrm{d}X_t/\mathrm{d}t = f(t, X_t, Y_t)$ driven by a stochastic process $\{Y_t\}_t$ with $\theta$-H\"older sample paths is estimated to be of strong order $\theta$ with respect to the time step, provided $f=f(t, x, y)$ is sufficiently regular and with suitable bounds. Here, it is proved that, in many typical cases, further conditions on the noise can be exploited so that the strong convergence is actually of order 1, regardless of the H\"older regularity of the sample paths. This applies for instance to additive or multiplicative It\^o process noises (such as Wiener, Ornstein-Uhlenbeck, and geometric Brownian motion processes); to point-process noises (such as Poisson point processes and Hawkes self-exciting processes, which even have jump-type discontinuities); and to transport-type processes with sample paths of bounded variation. The result is based on a novel approach, estimating the global error as an iterated integral over both large and small mesh scales, and switching the order of integration to move the critical regularity to the large scale. The work is complemented with numerical simulations illustrating the strong order 1 convergence in those cases, and with an example with fractional Brownian motion noise with Hurst parameter $0 < H < 1/2$ for which the order of convergence is $H + 1/2$, hence lower than the attained order 1 in the examples above, but still higher than the order $H$ of convergence expected from previous works.

The rising demand for electric vehicles (EVs) worldwide necessitates the development of robust and accessible charging infrastructure, particularly in developing countries where electricity disruptions pose a significant challenge. Earlier charging infrastructure optimization studies do not rigorously address such service disruption characteristics, resulting in suboptimal infrastructure designs. To address this issue, we propose an efficient simulation-based optimization model that estimates candidate stations' service reliability and incorporates it into the objective function and constraints. We employ the control variates (CV) variance reduction technique to enhance simulation efficiency. Our model provides a highly robust solution that buffers against uncertain electricity disruptions, even when candidate station service reliability is subject to underestimation or overestimation. Using a dataset from Surabaya, Indonesia, our numerical experiment demonstrates that the proposed model achieves a 13% higher average objective value compared to the non-robust solution. Furthermore, the CV technique successfully reduces the simulation sample size up to 10 times compared to Monte Carlo, allowing the model to solve efficiently using a standard MIP solver. Our study provides a robust and efficient solution for designing EV charging infrastructure that can thrive even in developing countries with uncertain electricity disruptions.

Community detection is a classic problem in network science with extensive applications in various fields. Among numerous approaches, the most common method is modularity maximization. Despite their design philosophy and wide adoption, heuristic modularity maximization algorithms rarely return an optimal partition or anything similar. We propose a specialized algorithm, Bayan, which returns partitions with a guarantee of either optimality or proximity to an optimal partition. At the core of the Bayan algorithm is a branch-and-cut scheme that solves an integer programming formulation of the modularity maximization problem to optimality or approximate it within a factor. We compare Bayan against 30 alternative community detection methods using structurally diverse synthetic and real networks. Our results demonstrate Bayan's distinctive accuracy and stability in retrieving ground-truth communities of standard benchmark graphs. Bayan is several times faster than open-source and commercial solvers for modularity maximization making it capable of finding optimal partitions for instances that cannot be optimized by any other existing method. Overall, our assessments point to Bayan as a suitable choice for exact maximization of modularity in real networks with up to 3000 edges (in their largest connected component) and approximating maximum modularity in larger instances on ordinary computers. A Python implementation of the Bayan algorithm (the bayanpy library) is publicly available through the package installer for Python (pip).

We study a market mechanism that sets edge prices to incentivize strategic agents to organize trips that efficiently share limited network capacity. This market allows agents to form groups to share trips, make decisions on departure times and route choices, and make payments to cover edge prices and other costs. We develop a new approach to analyze the existence and computation of market equilibrium, building on theories of combinatorial auctions and dynamic network flows. Our approach tackles the challenges in market equilibrium characterization arising from: (a) integer and network constraints on the dynamic flow of trips in sharing limited edge capacity; (b) heterogeneous and private preferences of strategic agents. We provide sufficient conditions on the network topology and agents' preferences that ensure the existence and polynomial-time computation of market equilibrium. We identify a particular market equilibrium that achieves maximum utilities for all agents, and is equivalent to the outcome of the classical Vickery Clark Grove mechanism. Finally, we extend our results to general networks with multiple populations and apply them to compute dynamic tolls for efficient carpooling in San Francisco Bay Area.

We consider the problem of maximizing the gains from trade (GFT) in two-sided markets. The seminal impossibility result by Myerson shows that even for bilateral trade, there is no individually rational (IR), Bayesian incentive compatible (BIC) and budget balanced (BB) mechanism that can achieve the full GFT. Moreover, the optimal BIC, IR and BB mechanism that maximizes the GFT is known to be complex and heavily depends on the prior. In this paper, we pursue a Bulow-Klemperer-style question, i.e. does augmentation allow for prior-independent mechanisms to beat the optimal mechanism? Our main result shows that in the double auction setting with $m$ i.i.d. buyers and $n$ i.i.d. sellers, by augmenting $O(1)$ buyers and sellers to the market, the GFT of a simple, dominant strategy incentive compatible (DSIC), and prior-independent mechanism in the augmented market is least the optimal in the original market, when the buyers' distribution first-order stochastically dominates the sellers' distribution. Furthermore, we consider general distributions without the stochastic dominance assumption. Existing hardness result by Babaioff et al. shows that no fixed finite number of agents is sufficient for all distributions. In the paper we provide a parameterized result, showing that $O(log(m/rn)/r)$ agents suffice, where $r$ is the probability that the buyer's value for the item exceeds the seller's value.

We consider the problem of uncertainty quantification in change point regressions, where the signal can be piecewise polynomial of arbitrary but fixed degree. That is we seek disjoint intervals which, uniformly at a given confidence level, must each contain a change point location. We propose a procedure based on performing local tests at a number of scales and locations on a sparse grid, which adapts to the choice of grid in the sense that by choosing a sparser grid one explicitly pays a lower price for multiple testing. The procedure is fast as its computational complexity is always of the order $\mathcal{O} (n \log (n))$ where $n$ is the length of the data, and optimal in the sense that under certain mild conditions every change point is detected with high probability and the widths of the intervals returned match the mini-max localisation rates for the associated change point problem up to log factors. A detailed simulation study shows our procedure is competitive against state of the art algorithms for similar problems. Our procedure is implemented in the R package ChangePointInference which is available via //github.com/gaviosha/ChangePointInference.

Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.

Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.

北京阿比特科技有限公司