亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep latent generative models have attracted increasing attention due to the capacity of combining the strengths of deep learning and probabilistic models in an elegant way. The data representations learned with the models are often continuous and dense. However in many applications, sparse representations are expected, such as learning sparse high dimensional embedding of data in an unsupervised setting, and learning multi-labels from thousands of candidate tags in a supervised setting. In some scenarios, there could be further restriction on degree of sparsity: the number of non-zero features of a representation cannot be larger than a pre-defined threshold $L_0$. In this paper we propose a sparse deep latent generative model SDLGM to explicitly model degree of sparsity and thus enable to learn the sparse structure of the data with the quantified sparsity constraint. The resulting sparsity of a representation is not fixed, but fits to the observation itself under the pre-defined restriction. In particular, we introduce to each observation $i$ an auxiliary random variable $L_i$, which models the sparsity of its representation. The sparse representations are then generated with a two-step sampling process via two Gumbel-Softmax distributions. For inference and learning, we develop an amortized variational method based on MC gradient estimator. The resulting sparse representations are differentiable with backpropagation. The experimental evaluation on multiple datasets for unsupervised and supervised learning problems shows the benefits of the proposed method.

相關內容

Mixup is a well-known data-dependent augmentation technique for DNNs, consisting of two sub-tasks: mixup generation and classification. However, the recent dominant online training method confines mixup to supervised learning (SL), and the objective of the generation sub-task is limited to selected sample pairs instead of the whole data manifold, which might cause trivial solutions. To overcome such limitations, we comprehensively study the objective of mixup generation and propose \textbf{S}cenario-\textbf{A}gnostic \textbf{Mix}up (SAMix) for both SL and Self-supervised Learning (SSL) scenarios. Specifically, we hypothesize and verify the objective function of mixup generation as optimizing local smoothness between two mixed classes subject to global discrimination from other classes. Accordingly, we propose $\eta$-balanced mixup loss for complementary learning of the two sub-objectives. Meanwhile, a label-free generation sub-network is designed, which effectively provides non-trivial mixup samples and improves transferable abilities. Moreover, to reduce the computational cost of online training, we further introduce a pre-trained version, SAMix$^\mathcal{P}$, achieving more favorable efficiency and generalizability. Extensive experiments on nine SL and SSL benchmarks demonstrate the consistent superiority and versatility of SAMix compared with existing methods.

Existing results for the estimation of the L\'evy measure are mostly limited to the onedimensional setting. We apply the spectral method to multidimensional L\'evy processes in order to construct a nonparametric estimator for the multivariate jump distribution. We prove convergence rates for the uniform estimation error under both a low- and a high-frequency observation regime. The method is robust to various dependence structures. Along the way, we present a uniform risk bound for the multivariate empirical characteristic function and its partial derivatives. The method is illustrated with simulation examples.

Learning high quality sentence embeddings from dialogues has drawn increasing attentions as it is essential to solve a variety of dialogue-oriented tasks with low annotation cost. However, directly annotating and gathering utterance relationships in conversations are difficult, while token-level annotations, \eg, entities, slots and templates, are much easier to obtain. General sentence embedding methods are usually sentence-level self-supervised frameworks and cannot utilize token-level extra knowledge. In this paper, we introduce Template-aware Dialogue Sentence Embedding (TaDSE), a novel augmentation method that utilizes template information to effectively learn utterance representation via self-supervised contrastive learning framework. TaDSE augments each sentence with its corresponding template and then conducts pairwise contrastive learning over both sentence and template. We further enhance the effect with a synthetically augmented dataset that enhances utterance-template relation, in which entity detection (slot-filling) is a preliminary step. We evaluate TaDSE performance on five downstream benchmark datasets. The experiment results show that TaDSE achieves significant improvements over previous SOTA methods, along with a consistent Intent Classification task performance improvement margin. We further introduce a novel analytic instrument of Semantic Compression method, for which we discover a correlation with uniformity and alignment. Our code will be released soon.

Model architectures such as wav2vec 2.0 and HuBERT have been proposed to learn speech representations from audio waveforms in a self-supervised manner. When they are combined with downstream tasks such as keyword spotting and speaker verification, they provide state-of-the-art performance. However, these models use a large number of parameters, the smallest version of which has 95 million parameters. This constitutes a challenge for edge AI device deployments. In this paper, we investigate the application of knowledge distillation to speech representation learning (SRL) models followed by joint fine-tuning with multiple downstream voice-activated tasks. In our experiments on two such tasks, our approach results in nearly 75% reduction in model size while suffering only 0.1% accuracy and 0.9% equal error rate degradation compared to the full-size model. In addition, we show that fine-tuning the SRL models results in a significant performance boost compared to using frozen SRL models.

Modern approaches for keyword spotting rely on training deep neural networks on large static datasets with i.i.d. distributions. However, the resulting models tend to underperform when presented with changing data regimes in real-life applications. This work investigates a simple but effective online continual learning method that updates a keyword spotter on-device via SGD as new data becomes available. Contrary to previous research, this work focuses on learning the same KWS task, which covers most commercial applications. During experiments with dynamic audio streams in different scenarios, that method improves the performance of a pre-trained small-footprint model by 34%. Moreover, experiments demonstrate that, compared to a naive online learning implementation, conditional model updates based on its performance in a small hold-out set drawn from the training distribution mitigate catastrophic forgetting.

Recent advances in state-of-the-art DNN architecture design have been moving toward Transformer models. These models achieve superior accuracy across a wide range of applications. This trend has been consistent over the past several years since Transformer models were originally introduced. However, the amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate, and this has made their deployment in latency-sensitive applications challenging. As such, there has been an increased focus on making Transformer models more efficient, with methods that range from changing the architecture design, all the way to developing dedicated domain-specific accelerators. In this work, we survey different approaches for efficient Transformer inference, including: (i) analysis and profiling of the bottlenecks in existing Transformer architectures and their similarities and differences with previous convolutional models; (ii) implications of Transformer architecture on hardware, including the impact of non-linear operations such as Layer Normalization, Softmax, and GELU, as well as linear operations, on hardware design; (iii) approaches for optimizing a fixed Transformer architecture; (iv) challenges in finding the right mapping and scheduling of operations for Transformer models; and (v) approaches for optimizing Transformer models by adapting the architecture using neural architecture search. Finally, we perform a case study by applying the surveyed optimizations on Gemmini, the open-source, full-stack DNN accelerator generator, and we show how each of these approaches can yield improvements, compared to previous benchmark results on Gemmini. Among other things, we find that a full-stack co-design approach with the aforementioned methods can result in up to 88.7x speedup with a minimal performance degradation for Transformer inference.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

Model-agnostic meta-learners aim to acquire meta-learned parameters from similar tasks to adapt to novel tasks from the same distribution with few gradient updates. With the flexibility in the choice of models, those frameworks demonstrate appealing performance on a variety of domains such as few-shot image classification and reinforcement learning. However, one important limitation of such frameworks is that they seek a common initialization shared across the entire task distribution, substantially limiting the diversity of the task distributions that they are able to learn from. In this paper, we augment MAML with the capability to identify the mode of tasks sampled from a multimodal task distribution and adapt quickly through gradient updates. Specifically, we propose a multimodal MAML (MMAML) framework, which is able to modulate its meta-learned prior parameters according to the identified mode, allowing more efficient fast adaptation. We evaluate the proposed model on a diverse set of few-shot learning tasks, including regression, image classification, and reinforcement learning. The results not only demonstrate the effectiveness of our model in modulating the meta-learned prior in response to the characteristics of tasks but also show that training on a multimodal distribution can produce an improvement over unimodal training.

When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

北京阿比特科技有限公司