亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

[Context and motivation] For automated driving systems, the operational context needs to be known in order to state guarantees on performance and safety. The operational design domain (ODD) is an abstraction of the operational context, and its definition is an integral part of the system development process. [Question / problem] There are still major uncertainties in how to clearly define and document the operational context in a diverse and distributed development environment such as the automotive industry. This case study investigates the challenges with context definitions for the development of perception functions that use machine learning for automated driving. [Principal ideas/results] Based on qualitative analysis of data from semi-structured interviews, the case study shows that there is a lack of standardisation for context definitions across the industry, ambiguities in the processes that lead to deriving the ODD, missing documentation of assumptions about the operational context, and a lack of involvement of function developers in the context definition. [Contribution] The results outline challenges experienced by an automotive supplier company when defining the operational context for systems using machine learning. Furthermore, the study collected ideas for potential solutions from the perspective of practitioners.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Since 2010, the output of a risk assessment tool that predicts how likely an individual is to commit severe violence against their partner has been integrated within the Basque country courtrooms. The EPV-R, the tool developed to assist police officers during the assessment of gender-based violence cases, was also incorporated to assist the decision-making of judges. With insufficient training, judges are exposed to an algorithmic output that influences the human decision of adopting measures in cases of gender-based violence. In this paper, we examine the risks, harms and limits of algorithmic governance within the context of gender-based violence. Through the lens of an Spanish judge exposed to this tool, we analyse how the EPV-R is impacting on the justice system. Moving beyond the risks of unfair and biased algorithmic outputs, we examine legal, social and technical pitfalls such as opaque implementation, efficiency's paradox and feedback loop, that could led to unintended consequences on women who suffer gender-based violence. Our interdisciplinary framework highlights the importance of understanding the impact and influence of risk assessment tools within judicial decision-making and increase awareness about its implementation in this context.

Mobility analysis, or understanding and modeling of people's mobility patterns in terms of when, where, and how people move from one place to another, is fundamentally important as such information is the basis for large-scale investment decisions on the nation's multi-modal transportation infrastructure. Recent rise of using passively generated mobile data from mobile devices have raised questions on using such data for capturing the mobility patterns of a population because: 1) there is a great variety of different kinds of mobile data and their respective properties are unknown; and 2) data pre-processing and analysis methods are often not explicitly reported. The high stakes involved with mobility analysis and issues associated with the passively generated mobile data call for mobility analysis (including data, methods and results) to be accessible to all, interoperable across different computing systems, reproducible and reusable by others. In this study, a container system named Mobility Analysis Workflow (MAW) that integrates data, methods and results, is developed. Built upon the containerization technology, MAW allows its users to easily create, configure, modify, execute and share their methods and results in the form of Docker containers. Tools for operationalizing MAW are also developed and made publicly available on GitHub. One use case of MAW is the comparative analysis for the impacts of different pre-processing and mobility analysis methods on inferred mobility patterns. This study finds that different pre-processing and analysis methods do have impacts on the resulting mobility patterns. The creation of MAW and a better understanding of the relationship between data, methods and resulting mobility patterns as facilitated by MAW represent an important first step toward promoting reproducibility and reusability in mobility analysis with passively-generated data.

Recruitment in large organisations often involves interviewing a large number of candidates. The process is resource intensive and complex. Therefore, it is important to carry it out efficiently and effectively. Planning the selection process consists of several problems, each of which maps to one or the other well-known computing problem. Research that looks at each of these problems in isolation is rich and mature. However, research that takes an integrated view of the problem is not common. In this paper, we take two of the most important aspects of the application processing problem, namely review/interview panel creation and interview scheduling. We have implemented our approach as a prototype system and have used it to automatically plan the interview process of a real-life data set. Our system provides a distinctly better plan than the existing practice, which is predominantly manual. We have explored various algorithmic options and have customised them to solve these panel creation and interview scheduling problems. We have evaluated these design options experimentally on a real data set and have presented our observations. Our prototype and experimental process and results may be a very good starting point for a full-fledged development project for automating application processing process.

Approximately 50% of development resources are devoted to UI development tasks [9]. Occupying a large proportion of development resources, developing icons can be a time-consuming task, because developers need to consider not only effective implementation methods but also easy-to-understand descriptions. In this paper, we present Auto-Icon+, an approach for automatically generating readable and efficient code for icons from design artifacts. According to our interviews to understand the gap between designers (icons are assembled from multiple components) and developers (icons as single images), we apply a heuristic clustering algorithm to compose the components into an icon image. We then propose an approach based on a deep learning model and computer vision methods to convert the composed icon image to fonts with descriptive labels, thereby reducing the laborious manual effort for developers and facilitating UI development. We quantitatively evaluate the quality of our method in the real world UI development environment and demonstrate that our method offers developers accurate, efficient, readable, and usable code for icon designs, in terms of saving 65.2% implementing time.

We present our case study that aims to help professional assessors make decisions in human assessment, in which they conduct interviews with assessees and evaluate their suitability for certain job roles. Our workshop with two industrial assessors revealed that a computational system that can extract nonverbal cues of assesses from interview videos would be beneficial to assessors in terms of supporting their decision making. In response, we developed such a system based on an unsupervised anomaly detection algorithm using multimodal behavioral features such as facial keypoints, pose, head pose, and gaze. Moreover, we enabled the system to output how much each feature contributed to the outlierness of the detected cues with the purpose of enhancing its interpretability. We then conducted a preliminary study to examine the validity of the system's output by using 20 actual assessment interview videos and involving the two assessors. The results suggested the advantages of using unsupervised anomaly detection in an interpretable manner by illustrating the informativeness of its outputs for assessors. Our approach, which builds on top of the idea of separation of observation and interpretation in human-AI teaming, will facilitate human decision making in highly contextual domains, such as human assessment, while keeping their trust in the system.

The past few years have witnessed an increasing interest in improving the perception performance of LiDARs on autonomous vehicles. While most of the existing works focus on developing new deep learning algorithms or model architectures, we study the problem from the physical design perspective, i.e., how different placements of multiple LiDARs influence the learning-based perception. To this end, we introduce an easy-to-compute information-theoretic surrogate metric to quantitatively and fast evaluate LiDAR placement for 3D detection of different types of objects. We also present a new data collection, detection model training and evaluation framework in the realistic CARLA simulator to evaluate disparate multi-LiDAR configurations. Using several prevalent placements inspired by the designs of self-driving companies, we show the correlation between our surrogate metric and object detection performance of different representative algorithms on KITTI through extensive experiments, validating the effectiveness of our LiDAR placement evaluation approach. Our results show that sensor placement is non-negligible in 3D point cloud-based object detection, which will contribute up to 10% performance discrepancy in terms of average precision in challenging 3D object detection settings. We believe that this is one of the first studies to quantitatively investigate the influence of LiDAR placement on perception performance.

Human-AI co-creativity involves both humans and AI collaborating on a shared creative product as partners. In a creative collaboration, interaction dynamics, such as turn-taking, contribution type, and communication, are the driving forces of the co-creative process. Therefore the interaction model is a critical and essential component for effective co-creative systems. There is relatively little research about interaction design in the co-creativity field, which is reflected in a lack of focus on interaction design in many existing co-creative systems. The primary focus of co-creativity research has been on the abilities of the AI. This paper focuses on the importance of interaction design in co-creative systems with the development of the Co-Creative Framework for Interaction design (COFI) that describes the broad scope of possibilities for interaction design in co-creative systems. Researchers can use COFI for modeling interaction in co-creative systems by exploring alternatives in this design space of interaction. COFI can also be beneficial while investigating and interpreting the interaction design of existing co-creative systems. We coded a dataset of existing 92 co-creative systems using COFI and analyzed the data to show how COFI provides a basis to categorize the interaction models of existing co-creative systems. We identify opportunities to shift the focus of interaction models in co-creativity to enable more communication between the user and AI leading to human-AI partnerships.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

北京阿比特科技有限公司