This paper explores the capabilities of current transformer-based language models for program evaluation of simple functional programming languages. We introduce a new program generation mechanism that allows control over syntactic sugar for semantically equivalent programs. T5 experiments reveal that neural functional program evaluation performs surprisingly well, achieving high 90% exact program match scores for most in-distribution and out-of-distribution tests. Using pretrained T5 weights has significant advantages over random initialization. We present and evaluate on three datasets to study generalization abilities that are specific to functional programs based on: type, function composition, and reduction steps. Code and data are publicly available at //github.com/ElementAI/neural-interpreters.
Warded Datalog+- extends the logic-based language Datalog with existential quantifiers in rule heads. Existential rules are needed for advanced reasoning tasks, e.g., ontological reasoning. The theoretical efficiency guarantees of Warded Datalog+- do not cover extensions crucial for data analytics, such as arithmetic. Moreover, despite the significance of arithmetic for common data analytic scenarios, no decidable fragment of any Datalog+- language extended with arithmetic has been identified. We close this gap by defining a new language that extends Warded Datalog+- with arithmetic and prove its P-completeness. Furthermore, we present an efficient reasoning algorithm for our newly defined language and prove descriptive complexity results for a recently introduced Datalog fragment with integer arithmetic, thereby closing an open question. We lay the theoretical foundation for highly expressive Datalog+- languages that combine the power of advanced recursive rules and arithmetic while guaranteeing efficient reasoning algorithms for applications in modern AI systems, such as Knowledge Graphs.
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent uncertainty, such as weather forecasting, medical prognosis, or collision avoidance in autonomous vehicles. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the important difference that the objective is to estimate probabilities rather than predicting the specific outcome. The goal of this work is to investigate probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on classification problems where the probabilities are related to model uncertainty. In the case of problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Human explanations of high-level decisions are often expressed in terms of key concepts the decisions are based on. In this paper, we study such concept-based explainability for Deep Neural Networks (DNNs). First, we define the notion of completeness, which quantifies how sufficient a particular set of concepts is in explaining a model's prediction behavior based on the assumption that complete concept scores are sufficient statistics of the model prediction. Next, we propose a concept discovery method that aims to infer a complete set of concepts that are additionally encouraged to be interpretable, which addresses the limitations of existing methods on concept explanations. To define an importance score for each discovered concept, we adapt game-theoretic notions to aggregate over sets and propose ConceptSHAP. Via proposed metrics and user studies, on a synthetic dataset with apriori-known concept explanations, as well as on real-world image and language datasets, we validate the effectiveness of our method in finding concepts that are both complete in explaining the decisions and interpretable. (The code is released at //github.com/chihkuanyeh/concept_exp)
We study ROUND-UFP and ROUND-SAP, two generalizations of the classical BIN PACKING problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of tasks where for each task we are given a demand and a subpath. In ROUND-UFP, the goal is to find a packing of all tasks into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of tasks on any edge does not exceed the capacity of the respective edge. In ROUND-SAP, the tasks are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to BIN PACKING, both the problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic $(2+\varepsilon)$-approximations for both problems. For the general case, we obtain an $O(\log\log n)$-approximation algorithm and an $O(\log\log\frac{1}{\delta})$-approximation under $(1+\delta)$-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum task demand is at most the minimum edge capacity), we obtain absolute $12$- and asymptotic $(16+\varepsilon)$-approximation algorithms for ROUND-UFP and ROUND-SAP, respectively.
We introduce Monte-Carlo Attention (MCA), a randomized approximation method for reducing the computational cost of self-attention mechanisms in Transformer architectures. MCA exploits the fact that the importance of each token in an input sequence varies with respect to their attention scores; thus, some degree of error can be tolerable when encoding tokens with low attention. Using approximate matrix multiplication, MCA applies different error bounds to encode input tokens such that those with low attention scores are computed with relaxed precision, whereas errors of salient elements are minimized. MCA can operate in parallel with other attention optimization schemes and does not require model modification. We study the theoretical error bounds and demonstrate that MCA reduces attention complexity (in FLOPS) for various Transformer models by up to 11$\times$ in GLUE benchmarks without compromising model accuracy.
GPT-2 and BERT demonstrate the effectiveness of using pre-trained language models (LMs) on various natural language processing tasks. However, LM fine-tuning often suffers from catastrophic forgetting when applied to resource-rich tasks. In this work, we introduce a concerted training framework (\method) that is the key to integrate the pre-trained LMs to neural machine translation (NMT). Our proposed Cnmt consists of three techniques: a) asymptotic distillation to ensure that the NMT model can retain the previous pre-trained knowledge; b) a dynamic switching gate to avoid catastrophic forgetting of pre-trained knowledge; and c) a strategy to adjust the learning paces according to a scheduled policy. Our experiments in machine translation show \method gains of up to 3 BLEU score on the WMT14 English-German language pair which even surpasses the previous state-of-the-art pre-training aided NMT by 1.4 BLEU score. While for the large WMT14 English-French task with 40 millions of sentence-pairs, our base model still significantly improves upon the state-of-the-art Transformer big model by more than 1 BLEU score.
In this paper, we propose a span based model combined with syntactic information for n-ary open information extraction. The advantage of span model is that it can leverage span level features, which is difficult in token based BIO tagging methods. We also improve the previous bootstrap method to construct training corpus. Experiments show that our model outperforms previous open information extraction systems. Our code and data are publicly available at //github.com/zhanjunlang/Span_OIE
This research mainly emphasizes on traffic detection thus essentially involving object detection and classification. The particular work discussed here is motivated from unsatisfactory attempts of re-using well known pre-trained object detection networks for domain specific data. In this course, some trivial issues leading to prominent performance drop are identified and ways to resolve them are discussed. For example, some simple yet relevant tricks regarding data collection and sampling prove to be very beneficial. Also, introducing a blur net to deal with blurred real time data is another important factor promoting performance elevation. We further study the neural network design issues for beneficial object classification and involve shared, region-independent convolutional features. Adaptive learning rates to deal with saddle points are also investigated and an average covariance matrix based pre-conditioned approach is proposed. We also introduce the use of optical flow features to accommodate orientation information. Experimental results demonstrate that this results in a steady rise in the performance rate.
In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.
Open Information Extraction (OIE) is the task of the unsupervised creation of structured information from text. OIE is often used as a starting point for a number of downstream tasks including knowledge base construction, relation extraction, and question answering. While OIE methods are targeted at being domain independent, they have been evaluated primarily on newspaper, encyclopedic or general web text. In this article, we evaluate the performance of OIE on scientific texts originating from 10 different disciplines. To do so, we use two state-of-the-art OIE systems applying a crowd-sourcing approach. We find that OIE systems perform significantly worse on scientific text than encyclopedic text. We also provide an error analysis and suggest areas of work to reduce errors. Our corpus of sentences and judgments are made available.