The integration of subterranean LoRaWAN and non-terrestrial networks (NTN) delivers substantial economic and societal benefits in remote agriculture and disaster rescue operations. The LoRa modulation leverages quasi-orthogonal spreading factors (SFs) to optimize data rates, airtime, coverage and energy consumption. However, it is still challenging to effectively assign SFs to end devices for minimizing co-SF interference in massive subterranean LoRaWAN NTN. To address this, we investigate a reinforcement learning (RL)-based SFs allocation scheme to optimize the system's energy efficiency (EE). To efficiently capture the device-to-environment interactions in dense networks, we proposed an SFs allocation technique using the multi-agent dueling double deep Q-network (MAD3QN) and the multi-agent advantage actor-critic (MAA2C) algorithms based on an analytical reward mechanism. Our proposed RL-based SFs allocation approach evinces better performance compared to four benchmarks in the extreme underground direct-to-satellite scenario. Remarkably, MAD3QN shows promising potentials in surpassing MAA2C in terms of convergence rate and EE.
We consider optimal experimental design (OED) for nonlinear Bayesian inverse problems governed by large-scale partial differential equations (PDEs). For the optimality criteria of Bayesian OED, we consider both expected information gain and summary statistics including the trace and determinant of the information matrix that involves the evaluation of the parameter-to-observable (PtO) map and its derivatives. However, it is prohibitive to compute and optimize these criteria when the PDEs are very expensive to solve, the parameters to estimate are high-dimensional, and the optimization problem is combinatorial, high-dimensional, and non-convex. To address these challenges, we develop an accurate, scalable, and efficient computational framework to accelerate the solution of Bayesian OED. In particular, the framework is developed based on derivative-informed neural operator (DINO) surrogates with proper dimension reduction techniques and a modified swapping greedy algorithm. We demonstrate the high accuracy of the DINO surrogates in the computation of the PtO map and the optimality criteria compared to high-fidelity finite element approximations. We also show that the proposed method is scalable with increasing parameter dimensions. Moreover, we demonstrate that it achieves high efficiency with over 1000X speedup compared to a high-fidelity Bayesian OED solution for a three-dimensional PDE example with tens of thousands of parameters, including both online evaluation and offline construction costs of the surrogates.
Physics-informed neural networks (PINNs) have shown promising potential for solving partial differential equations (PDEs) using deep learning. However, PINNs face training difficulties for evolutionary PDEs, particularly for dynamical systems whose solutions exhibit multi-scale or turbulent behavior over time. The reason is that PINNs may violate the temporal causality property since all the temporal features in the PINNs loss are trained simultaneously. This paper proposes to use implicit time differencing schemes to enforce temporal causality, and use transfer learning to sequentially update the PINNs in space as surrogates for PDE solutions in different time frames. The evolving PINNs are better able to capture the varying complexities of the evolutionary equations, while only requiring minor updates between adjacent time frames. Our method is theoretically proven to be convergent if the time step is small and each PINN in different time frames is well-trained. In addition, we provide state-of-the-art (SOTA) numerical results for a variety of benchmarks for which existing PINNs formulations may fail or be inefficient. We demonstrate that the proposed method improves the accuracy of PINNs approximation for evolutionary PDEs and improves efficiency by a factor of 4-40x.
The advent of fifth generation (5G) networks has opened new avenues for enhancing connectivity, particularly in challenging environments like remote areas or disaster-struck regions. Unmanned aerial vehicles (UAVs) have been identified as a versatile tool in this context, particularly for improving network performance through the Integrated access and backhaul (IAB) feature of 5G. However, existing approaches to UAV-assisted network enhancement face limitations in dynamically adapting to varying user locations and network demands. This paper introduces a novel approach leveraging deep reinforcement learning (DRL) to optimize UAV placement in real-time, dynamically adjusting to changing network conditions and user requirements. Our method focuses on the intricate balance between fronthaul and backhaul links, a critical aspect often overlooked in current solutions. The unique contribution of this work lies in its ability to autonomously position UAVs in a way that not only ensures robust connectivity to ground users but also maintains seamless integration with central network infrastructure. Through various simulated scenarios, we demonstrate how our approach effectively addresses these challenges, enhancing coverage and network performance in critical areas. This research fills a significant gap in UAV-assisted 5G networks, providing a scalable and adaptive solution for future mobile networks.
With the proliferation of intelligent mobile devices in wireless device-to-device (D2D) networks, decentralized federated learning (DFL) has attracted significant interest. Compared to centralized federated learning (CFL), DFL mitigates the risk of central server failures due to communication bottlenecks. However, DFL faces several challenges, such as the severe heterogeneity of data distributions in diverse environments, and the transmission outages and package errors caused by the adoption of the User Datagram Protocol (UDP) in D2D networks. These challenges often degrade the convergence of training DFL models. To address these challenges, we conduct a thorough theoretical convergence analysis for DFL and derive a convergence bound. By defining a novel quantity named unreliable links-aware neighborhood discrepancy in this convergence bound, we formulate a tractable optimization objective, and develop a novel Topology Learning method considering the Representation Discrepancy and Unreliable Links in DFL, named ToLRDUL. Intensive experiments under both feature skew and label skew settings have validated the effectiveness of our proposed method, demonstrating improved convergence speed and test accuracy, consistent with our theoretical findings.
We propose an energy-efficient equalizer for IM/DD systems based on spiking neural networks. We optimize a neural spike encoding that boosts the equalizer's performance while decreasing energy consumption.
As an indispensable ingredient of intelligence, commonsense reasoning is crucial for large language models (LLMs) in real-world scenarios. In this paper, we propose CORECODE, a dataset that contains abundant commonsense knowledge manually annotated on dyadic dialogues, to evaluate the commonsense reasoning and commonsense conflict detection capabilities of Chinese LLMs. We categorize commonsense knowledge in everyday conversations into three dimensions: entity, event, and social interaction. For easy and consistent annotation, we standardize the form of commonsense knowledge annotation in open-domain dialogues as "domain: slot = value". A total of 9 domains and 37 slots are defined to capture diverse commonsense knowledge. With these pre-defined domains and slots, we collect 76,787 commonsense knowledge annotations from 19,700 dialogues through crowdsourcing. To evaluate and enhance the commonsense reasoning capability for LLMs on the curated dataset, we establish a series of dialogue-level reasoning and detection tasks, including commonsense knowledge filling, commonsense knowledge generation, commonsense conflict phrase detection, domain identification, slot identification, and event causal inference. A wide variety of existing open-source Chinese LLMs are evaluated with these tasks on our dataset. Experimental results demonstrate that these models are not competent to predict CORECODE's plentiful reasoning content, and even ChatGPT could only achieve 0.275 and 0.084 accuracy on the domain identification and slot identification tasks under the zero-shot setting. We release the data and codes of CORECODE at //github.com/danshi777/CORECODE to promote commonsense reasoning evaluation and study of LLMs in the context of daily conversations.
With the rise of Web 2.0 platforms such as online social media, people's private information, such as their location, occupation and even family information, is often inadvertently disclosed through online discussions. Therefore, it is important to detect such unwanted privacy disclosures to help alert people affected and the online platform. In this paper, privacy disclosure detection is modeled as a multi-label text classification (MLTC) problem, and a new privacy disclosure detection model is proposed to construct an MLTC classifier for detecting online privacy disclosures. This classifier takes an online post as the input and outputs multiple labels, each reflecting a possible privacy disclosure. The proposed presentation method combines three different sources of information, the input text itself, the label-to-text correlation and the label-to-label correlation. A double-attention mechanism is used to combine the first two sources of information, and a graph convolutional network (GCN) is employed to extract the third source of information that is then used to help fuse features extracted from the first two sources of information. Our extensive experimental results, obtained on a public dataset of privacy-disclosing posts on Twitter, demonstrated that our proposed privacy disclosure detection method significantly and consistently outperformed other state-of-the-art methods in terms of all key performance indicators.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.