亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the proliferation of intelligent mobile devices in wireless device-to-device (D2D) networks, decentralized federated learning (DFL) has attracted significant interest. Compared to centralized federated learning (CFL), DFL mitigates the risk of central server failures due to communication bottlenecks. However, DFL faces several challenges, such as the severe heterogeneity of data distributions in diverse environments, and the transmission outages and package errors caused by the adoption of the User Datagram Protocol (UDP) in D2D networks. These challenges often degrade the convergence of training DFL models. To address these challenges, we conduct a thorough theoretical convergence analysis for DFL and derive a convergence bound. By defining a novel quantity named unreliable links-aware neighborhood discrepancy in this convergence bound, we formulate a tractable optimization objective, and develop a novel Topology Learning method considering the Representation Discrepancy and Unreliable Links in DFL, named ToLRDUL. Intensive experiments under both feature skew and label skew settings have validated the effectiveness of our proposed method, demonstrating improved convergence speed and test accuracy, consistent with our theoretical findings.

相關內容

Multimedia services over mobile networks pose several challenges, such as the efficient management of radio resources or the latency induced by network delays and buffering requirements on the multimedia players. In Long Term Evolution (LTE) networks, the definition of multimedia broadcast services over a common radio channel addresses the shortage of radio resources but introduces the problem of network error recovery. In order to address network errors on LTE multimedia broadcast services, the current standards propose the combined use of forward error correction and unicast recovery techniques at the application level. This paper shows how to efficiently synchronize the broadcasting server and the multimedia players and how to reduce service latency by limiting the multimedia player buffer length. This is accomplished by analyzing the relation between the different parameters of the LTE multimedia broadcast service, the multimedia player buffer length, and service interruptions. A case study is simulated to confirm how the quality of the multimedia service is improved by applying our proposals.

An emotional support conversation system aims to alleviate users' emotional distress and assist them in addressing their challenges. To generate supportive responses, it is critical to consider multiple factors such as empathy, support strategies, and response coherence, as established in prior methods. Nonetheless, previous models occasionally generate unhelpful responses, which intend to provide support but display counterproductive effects. According to psychology and communication theories, poor performance in just one contributing factor might cause a response to be unhelpful. From the model training perspective, since these models have not been exposed to unhelpful responses during their training phase, they are unable to distinguish if the tokens they generate might result in unhelpful responses during inference. To address this issue, we introduce a novel model-agnostic framework named mitigating unhelpfulness with multifaceted AI feedback for emotional support (Muffin). Specifically, Muffin employs a multifaceted AI feedback module to assess the helpfulness of responses generated by a specific model with consideration of multiple factors. Using contrastive learning, it then reduces the likelihood of the model generating unhelpful responses compared to the helpful ones. Experimental results demonstrate that Muffin effectively mitigates the generation of unhelpful responses while slightly increasing response fluency and relevance.

Systolic arrays are a prominent choice for deep neural network (DNN) accelerators because they offer parallelism and efficient data reuse. Improving the reliability of DNN accelerators is crucial as hardware faults can degrade the accuracy of DNN inferencing. Systolic arrays make use of a large number of processing elements (PEs) for parallel processing, but when one PE is faulty, the error propagates and affects the outcomes of downstream PEs. Due to the large number of PEs, the cost associated with implementing hardware-based runtime monitoring of every single PE is infeasible. We present a solution to optimize the placement of hardware monitors within systolic arrays. We first prove that $2N-1$ monitors are needed to localize a single faulty PE and we also derive the monitor placement. We show that a second placement optimization problem, which minimizes the set of candidate faulty PEs for a given number of monitors, is NP-hard. Therefore, we propose a heuristic approach to balance the reliability and hardware resource utilization in DNN accelerators when number of monitors is limited. Experimental evaluation shows that to localize a single faulty PE, an area overhead of only 0.33% is incurred for a $256\times 256$ systolic array.

Natural policy gradient (NPG) methods with entropy regularization achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the \emph{persistence of excitation} condition, and achieves a fast convergence rate of $\tilde{O}(1/T)$ up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits \emph{linear convergence} up to a function approximation error.

A pivotal aspect in the design of neural networks lies in selecting activation functions, crucial for introducing nonlinear structures that capture intricate input-output patterns. While the effectiveness of adaptive or trainable activation functions has been studied in domains with ample data, like image classification problems, significant gaps persist in understanding their influence on classification accuracy and predictive uncertainty in settings characterized by limited data availability. This research aims to address these gaps by investigating the use of two types of adaptive activation functions. These functions incorporate shared and individual trainable parameters per hidden layer and are examined in three testbeds derived from additive manufacturing problems containing fewer than one hundred training instances. Our investigation reveals that adaptive activation functions, such as Exponential Linear Unit (ELU) and Softplus, with individual trainable parameters, result in accurate and confident prediction models that outperform fixed-shape activation functions and the less flexible method of using identical trainable activation functions in a hidden layer. Therefore, this work presents an elegant way of facilitating the design of adaptive neural networks in scientific and engineering problems.

As IoT networks become more complex and generate massive amounts of dynamic data, it is difficult to monitor and detect anomalies using traditional statistical methods and machine learning methods. Deep learning algorithms can process and learn from large amounts of data and can also be trained using unsupervised learning techniques, meaning they don't require labelled data to detect anomalies. This makes it possible to detect new and unknown anomalies that may not have been detected before. Also, deep learning algorithms can be automated and highly scalable; thereby, they can run continuously in the backend and make it achievable to monitor large IoT networks instantly. In this work, we conduct a literature review on the most recent works using deep learning techniques and implement a model using ensemble techniques on the KDD Cup 99 dataset. The experimental results showcase the impressive performance of our deep anomaly detection model, achieving an accuracy of over 98\%.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司