亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI-empowered music processing is a diverse field that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classification). For developers and amateurs, it is very difficult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience.

相關內容

這個新版本的工具會議系列恢復了從1989年到2012年的50個會議的傳統。工具最初是“面向對象語言和系統的技術”,后來發展到包括軟件技術的所有創新方面。今天許多最重要的軟件概念都是在這里首次引入的。2019年TOOLS 50+1在俄羅斯喀山附近舉行,以同樣的創新精神、對所有與軟件相關的事物的熱情、科學穩健性和行業適用性的結合以及歡迎該領域所有趨勢和社區的開放態度,延續了該系列。 官網鏈接: · Networking · 卷積 · 可理解性 · TCN ·
2023 年 12 月 12 日

In the task of emotion recognition from videos, a key improvement has been to focus on emotions over time rather than a single frame. There are many architectures to address this task such as GRUs, LSTMs, Self-Attention, Transformers, and Temporal Convolutional Networks (TCNs). However, these methods suffer from high memory usage, large amounts of operations, or poor gradients. We propose a method known as Neighborhood Attention with Convolutions TCN (NAC-TCN) which incorporates the benefits of attention and Temporal Convolutional Networks while ensuring that causal relationships are understood which results in a reduction in computation and memory cost. We accomplish this by introducing a causal version of Dilated Neighborhood Attention while incorporating it with convolutions. Our model achieves comparable, better, or state-of-the-art performance over TCNs, TCAN, LSTMs, and GRUs while requiring fewer parameters on standard emotion recognition datasets. We publish our code online for easy reproducibility and use in other projects.

Music editing primarily entails the modification of instrument tracks or remixing in the whole, which offers a novel reinterpretation of the original piece through a series of operations. These music processing methods hold immense potential across various applications but demand substantial expertise. Prior methodologies, although effective for image and audio modifications, falter when directly applied to music. This is attributed to music's distinctive data nature, where such methods can inadvertently compromise the intrinsic harmony and coherence of music. In this paper, we develop InstructME, an Instruction guided Music Editing and remixing framework based on latent diffusion models. Our framework fortifies the U-Net with multi-scale aggregation in order to maintain consistency before and after editing. In addition, we introduce chord progression matrix as condition information and incorporate it in the semantic space to improve melodic harmony while editing. For accommodating extended musical pieces, InstructME employs a chunk transformer, enabling it to discern long-term temporal dependencies within music sequences. We tested InstructME in instrument-editing, remixing, and multi-round editing. Both subjective and objective evaluations indicate that our proposed method significantly surpasses preceding systems in music quality, text relevance and harmony. Demo samples are available at //musicedit.github.io/

In the realm of music therapy, Virtual Reality (VR) has a long-standing history of enriching human experiences through immersive applications, spanning entertainment games, serious games, and professional training in various fields. However, the untapped potential lies in using VR games to support mindfulness through music. We present a new approach utilizing a virtual environment to facilitate learning how to play the handpan -- an instrument in the shape of a spherical dish with harmonically tuned notes used commonly in the sound healing practice of mindfulness. In a preliminary study, we compared six interfaces, where the highlighted path interface performed best. However, participants expressed preference for the standard interface inspired by rhythm games like Guitar Hero.

The advancement of generative AI has given rise to pressing copyright challenges, particularly in music industry. This paper focuses on the economic aspects of these challenges, emphasizing that the economic impact constitutes a central issue in the copyright arena. The complexity of the black-box generative AI technologies not only suggests but necessitates algorithmic solutions. However, such solutions have been largely missing, leading to regulatory challenges in this landscape. We aim to bridge the gap in current approaches by proposing potential royalty models for revenue sharing on AI music generation platforms. Our methodology involves a detailed analysis of existing royalty models in platforms like Spotify and YouTube, and adapting these to the unique context of AI-generated music. A significant challenge we address is the attribution of AI-generated music to influential copyrighted content in the training data. To this end, we present algorithmic solutions employing data attribution techniques. Our experimental results verify the effectiveness of these solutions. This research represents a pioneering effort in integrating technical advancements with economic and legal considerations in the field of generative AI, offering a computational copyright solution for the challenges posed by the opaque nature of AI technologies.

End-to-end neural diarization with encoder-decoder based attractors (EEND-EDA) is a method to perform diarization in a single neural network. EDA handles the diarization of a flexible number of speakers by using an LSTM-based encoder-decoder that generates a set of speaker-wise attractors in an autoregressive manner. In this paper, we propose to replace EDA with a transformer-based attractor calculation (TA) module. TA is composed of a Combiner block and a Transformer decoder. The main function of the combiner block is to generate conversational dependent (CD) embeddings by incorporating learned conversational information into a global set of embeddings. These CD embeddings will then serve as the input for the transformer decoder. Results on public datasets show that EEND-TA achieves 2.68% absolute DER improvement over EEND-EDA. EEND-TA inference is 1.28 times faster than that of EEND-EDA.

Ranking and selection (R&S) aims to select the best alternative with the largest mean performance from a finite set of alternatives. Recently, considerable attention has turned towards the large-scale R&S problem which involves a large number of alternatives. Ideal large-scale R&S procedures should be sample optimal, i.e., the total sample size required to deliver an asymptotically non-zero probability of correct selection (PCS) grows at the minimal order (linear order) in the number of alternatives, $k$. Surprisingly, we discover that the na\"ive greedy procedure, which keeps sampling the alternative with the largest running average, performs strikingly well and appears sample optimal. To understand this discovery, we develop a new boundary-crossing perspective and prove that the greedy procedure is sample optimal for the scenarios where the best mean maintains at least a positive constant away from all other means as $k$ increases. We further show that the derived PCS lower bound is asymptotically tight for the slippage configuration of means with a common variance. For other scenarios, we consider the probability of good selection and find that the result depends on the growth behavior of the number of good alternatives: if it remains bounded as $k$ increases, the sample optimality still holds; otherwise, the result may change. Moreover, we propose the explore-first greedy procedures by adding an exploration phase to the greedy procedure. The procedures are proven to be sample optimal and consistent under the same assumptions. Last, we numerically investigate the performance of our greedy procedures in solving large-scale R&S problems.

While several long-form VideoQA datasets have been introduced, the length of both videos used to curate questions and sub-clips of clues leveraged to answer those questions have not yet reached the criteria for genuine long-form video understanding. Moreover, their QAs are unduly narrow and modality-biased, lacking a wider view of understanding long-term video content with rich dynamics and complex narratives. To remedy this, we introduce MoVQA, a long-form movie question-answering dataset, and benchmark to assess the diverse cognitive capabilities of multimodal systems rely on multi-level temporal lengths, with considering both video length and clue length. Additionally, to take a step towards human-level understanding in long-form video, versatile and multimodal question-answering is designed from the moviegoer-perspective to assess the model capabilities on various perceptual and cognitive axes.Through analysis involving various baselines reveals a consistent trend: the performance of all methods significantly deteriorate with increasing video and clue length. Meanwhile, our established baseline method has shown some improvements, but there is still ample scope for enhancement on our challenging MoVQA dataset. We expect our MoVQA to provide a new perspective and encourage inspiring works on long-form video understanding research.

Few-shot segmentation (FSS) aims to segment novel classes in a query image by using only a small number of supporting images from base classes. However, in cross-domain few-shot segmentation (CD-FSS), leveraging features from label-rich domains for resource-constrained domains poses challenges due to domain discrepancies. This work presents a Dynamically Adaptive Refine (DARNet) method that aims to balance generalization and specificity for CD-FSS. Our method includes the Channel Statistics Disruption (CSD) strategy, which perturbs feature channel statistics in the source domain, bolstering generalization to unknown target domains. Moreover, recognizing the variability across target domains, an Adaptive Refine Self-Matching (ARSM) method is also proposed to adjust the matching threshold and dynamically refine the prediction result with the self-matching method, enhancing accuracy. We also present a Test-Time Adaptation (TTA) method to refine the model's adaptability to diverse feature distributions. Our approach demonstrates superior performance against state-of-the-art methods in CD-FSS tasks.

Synthesizers are powerful tools that allow musicians to create dynamic and original sounds. Existing commercial interfaces for synthesizers typically require musicians to interact with complex low-level parameters or to manage large libraries of premade sounds. To address these challenges, we implement SynthScribe -- a fullstack system that uses multimodal deep learning to let users express their intentions at a much higher level. We implement features which address a number of difficulties, namely 1) searching through existing sounds, 2) creating completely new sounds, 3) making meaningful modifications to a given sound. This is achieved with three main features: a multimodal search engine for a large library of synthesizer sounds; a user centered genetic algorithm by which completely new sounds can be created and selected given the users preferences; a sound editing support feature which highlights and gives examples for key control parameters with respect to a text or audio based query. The results of our user studies show SynthScribe is capable of reliably retrieving and modifying sounds while also affording the ability to create completely new sounds that expand a musicians creative horizon.

Artificial Intelligence (AI) is expected to play an instrumental role in the next generation of wireless systems, such as sixth-generation (6G) mobile network. However, massive data, energy consumption, training complexity, and sensitive data protection in wireless systems are all crucial challenges that must be addressed for training AI models and gathering intelligence and knowledge from distributed devices. Federated Learning (FL) is a recent framework that has emerged as a promising approach for multiple learning agents to build an accurate and robust machine learning models without sharing raw data. By allowing mobile handsets and devices to collaboratively learn a global model without explicit sharing of training data, FL exhibits high privacy and efficient spectrum utilization. While there are a lot of survey papers exploring FL paradigms and usability in 6G privacy, none of them has clearly addressed how FL can be used to improve the protocol stack and wireless operations. The main goal of this survey is to provide a comprehensive overview on FL usability to enhance mobile services and enable smart ecosystems to support novel use-cases. This paper examines the added-value of implementing FL throughout all levels of the protocol stack. Furthermore, it presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments. Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry and sustain the development of cutting-edge mobile services.

北京阿比特科技有限公司