亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Geometric quantum mechanics, through its differential-geometric underpinning, provides additional tools of analysis and interpretation that bring quantum mechanics closer to classical mechanics: state spaces in both are equipped with symplectic geometry. This opens the door to revisiting foundational questions and issues, such as the nature of quantum entropy, from a geometric perspective. Central to this is the concept of geometric quantum state -- the probability measure on a system's space of pure states. This space's continuity leads us to introduce two analysis tools, inspired by Renyi's information theory, to characterize and quantify fundamental properties of geometric quantum states: the quantum information dimension that is the rate of geometric quantum state compression and the dimensional geometric entropy that monitors information stored in quantum states. We recount their classical definitions, information-theoretic meanings, and physical interpretations, and adapt them to quantum systems via the geometric approach. We then explicitly compute them in various examples and classes of quantum system. We conclude commenting on future directions for information in geometric quantum mechanics.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 信息理論 · Extensibility · 香農 · 分布式表示 ·
2022 年 1 月 14 日

The field of Information Theory is founded on Claude Shannon's seminal ideas relating to entropy. Nevertheless, his well-known avoidance of meaning (Shannon, 1948) still persists to this day, so that Information Theory remains poorly connected to many fields with clear informational content and a dependence on semantics. Herein we propose an extension to Quantum Information Theory which, subject to constraints, applies quantum entanglement and information entropy as linguistic tools that model semantics through measures of both difference and equivalence. This extension integrates Denotational Semantics with Information Theory via a model based on distributional representation and partial data triples known as Corolla.

Quantum machine learning is a fast emerging field that aims to tackle machine learning using quantum algorithms and quantum computing. Due to the lack of physical qubits and an effective means to map real-world data from Euclidean space to Hilbert space, most of these methods focus on quantum analogies or process simulations rather than devising concrete architectures based on qubits. In this paper, we propose a novel hybrid quantum-classical algorithm for graph-structured data, which we refer to as the Decompositional Quantum Graph Neural Network (DQGNN). DQGNN implements the GNN theoretical framework using the tensor product and unity matrices representation, which greatly reduces the number of model parameters required. When controlled by a classical computer, DQGNN can accommodate arbitrarily sized graphs by processing substructures from the input graph using a modestly-sized quantum device. The architecture is based on a novel mapping from real-world data to Hilbert space. This mapping maintains the distance relations present in the data and reduces information loss. Experimental results show that the proposed method outperforms competitive state-of-the-art models with only 1.68\% parameters compared to those models.

$k$-means clustering is a fundamental problem in various disciplines. This problem is nonconvex, and standard algorithms are only guaranteed to find a local optimum. Leveraging the structure of local solutions characterized in [1], we propose a general algorithmic framework for escaping undesirable local solutions and recovering the global solution (or the ground truth). This framework consists of alternating between the following two steps iteratively: (i) detect mis-specified clusters in a local solution and (ii) improve the current local solution by non-local operations. We discuss implementation of these steps, and elucidate how the proposed framework unifies variants of $k$-means algorithm in literature from a geometric perspective. In addition, we introduce two natural extensions of the proposed framework, where the initial number of clusters is misspecified. We provide theoretical justification for our approach, which is corroborated with extensive experiments.

We illustrate an application of Algorithmic Information Dynamics to Cellular Automata (CA) demonstrating how this digital calculus is able to quantify change in discrete dynamical systems. We demonstrate the sensitivity of the Block Decomposition Method on 1D and 2D CA, including Conway's Game of Life, against measures of statistical nature such as compression (LZW) and Shannon Entropy in two different contexts (1) perturbation analysis and (2) dynamic-state colliding CA. The approach is interesting because it analyses a quintessential object native to software space (CA) in software space itself by using algorithmic information dynamics through a model-driven universal search instead of a traditional statistical approach e.g. LZW compression or Shannon entropy. The colliding example of two state-independent (if not three as one is regulating the collision itself) discrete dynamical systems offers a potential proof of concept for the development of a multivariate version of the AID calculus.

Measuring the predictability and complexity of time series using entropy is essential tool de-signing and controlling a nonlinear system. However, the existing methods have some drawbacks related to the strong dependence of entropy on the parameters of the methods. To overcome these difficulties, this study proposes a new method for estimating the entropy of a time series using the LogNNet neural network model. The LogNNet reservoir matrix is filled with time series elements according to our algorithm. The accuracy of the classification of images from the MNIST-10 database is considered as the entropy measure and denoted by NNetEn. The novelty of entropy calculation is that the time series is involved in mixing the input information in the res-ervoir. Greater complexity in the time series leads to a higher classification accuracy and higher NNetEn values. We introduce a new time series characteristic called time series learning inertia that determines the learning rate of the neural network. The robustness and efficiency of the method is verified on chaotic, periodic, random, binary, and constant time series. The comparison of NNetEn with other methods of entropy estimation demonstrates that our method is more robust and accurate and can be widely used in practice.

The discrepant posterior phenomenon (DPP) is a counter-intuitive phenomenon that can frequently occur in a Bayesian analysis of multivariate parameters. It refers to the phenomenon that a parameter estimate based on a posterior is more extreme than both of those inferred based on either the prior or the likelihood alone. Inferential claims that exhibit DPP defy the common intuition that the posterior is a prior-data compromise, and the phenomenon can be surprisingly ubiquitous in well-behaved Bayesian models. In this paper we revisit this phenomenon and, using point estimation as an example, derive conditions under which the DPP occurs in Bayesian models with exponential quadratic likelihoods and conjugate multivariate Gaussian priors. The family of exponential quadratic likelihood models includes Gaussian models and those models with local asymptotic normality property. We provide an intuitive geometric interpretation of the phenomenon and show that there exists a nontrivial space of marginal directions such that the DPP occurs. We further relate the phenomenon to the Simpson's paradox and discover their deep-rooted connection that is associated with marginalization. We also draw connections with Bayesian computational algorithms when difficult geometry exists. Our discovery demonstrates that DPP is more prevalent than previously understood and anticipated. Theoretical results are complemented by numerical illustrations. Scenarios covered in this study have implications for parameterization, sensitivity analysis, and prior choice for Bayesian modeling.

This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. I introduce the concept of Dimensional complexity in algorithmic efficiency and deduce that an optimally efficient algorithm has zero Time complexity, zero Space complexity, and an infinite Dimensional complexity. This algorithm is then used to generate the number line.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

The concept of Fisher information can be useful even in cases where the probability distributions of interest are not absolutely continuous with respect to the natural reference measure on the underlying space. Practical examples where this extension is useful are provided in the context of multi-object tracking statistical models. Upon defining the Fisher information without introducing a reference measure, we provide remarkably concise proofs of the loss of Fisher information in some widely used multi-object tracking observation models.

This is full length article (draft version) where problem number of topics in Topic Modeling is discussed. We proposed idea that Renyi and Tsallis entropy can be used for identification of optimal number in large textual collections. We also report results of numerical experiments of Semantic stability for 4 topic models, which shows that semantic stability play very important role in problem topic number. The calculation of Renyi and Tsallis entropy based on thermodynamics approach.

北京阿比特科技有限公司