亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The field of Information Theory is founded on Claude Shannon's seminal ideas relating to entropy. Nevertheless, his well-known avoidance of meaning (Shannon, 1948) still persists to this day, so that Information Theory remains poorly connected to many fields with clear informational content and a dependence on semantics. Herein we propose an extension to Quantum Information Theory which, subject to constraints, applies quantum entanglement and information entropy as linguistic tools that model semantics through measures of both difference and equivalence. This extension integrates Denotational Semantics with Information Theory via a model based on distributional representation and partial data triples known as Corolla.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Extensibility · Guidance · 可理解性 · Better ·
2022 年 4 月 20 日

In the coming years, quantum networks will allow quantum applications to thrive thanks to the new opportunities offered by end-to-end entanglement of qubits on remote hosts via quantum repeaters. On a geographical scale, this will lead to the dawn of the Quantum Internet. While a full-blown deployment is yet to come, the research community is already working on a variety of individual enabling technologies and solutions. In this paper, with the guidance of extensive simulations, we take a broader view and investigate the problems of Quality of Service (QoS) and provisioning in the context of quantum networks, which are very different from their counterparts in classical data networks due to some of their fundamental properties. Our work leads the way towards a new class of studies that will allow the research community to better understand the challenges of quantum networks and their potential commercial exploitation.

Quantum communications is a promising technology that will play a fundamental role in the design of future networks. In fact, significant efforts are being dedicated by both the quantum physics and the classical communications communities on developing new architectures, solutions, and practical implementations of quantum communication networks (QCNs). Although these efforts led to various advances in today's technologies, there still exists a non-trivial gap between the research efforts of the two communities on designing and optimizing the QCN performance. For instance, most prior works by the classical communications community ignore important quantum physics-based constraints when designing QCNs. For example, many works on entanglement distribution do not account for the decoherence of qubits inside quantum memories and, thus, their designs become impractical since they assume an infinite quantum states' lifetime. In this paper, we introduce a novel framework, dubbed physics-informed QCNs, for designing and analyzing the performance of QCNs, by relying on the quantum physics principles that underly the different QCN components. The need of the proposed approach is then assessed and its fundamental role in designing practical QCNs is analyzed across various open research areas. Moreover, we identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies to enhance their performance. Finally, we analyze multiple pressing challenges and open research directions in QCNs that must be treated using a physics-informed approach to lead practically viable results. Ultimately, this work attempts to bridge the gap between the classical communications and the quantum physics communities in the area of QCNs to foster the development of future communication networks (6G and beyond, and the quantum Internet).

In the upcoming 6G era, existing terrestrial networks have evolved toward space-air-ground integrated networks (SAGIN), providing ultra-high data rates, seamless network coverage, and ubiquitous intelligence for communications of applications and services. However, conventional communications in SAGIN still face data confidentiality issues. Fortunately, the concept of Quantum Key Distribution (QKD) over SAGIN is able to provide information-theoretic security for secure communications in SAGIN with quantum cryptography. Therefore, in this paper, we propose the quantum-secured SAGIN which is feasible to achieve proven secure communications using quantum mechanics to protect data channels between space, air, and ground nodes. Moreover, we propose a universal QKD service provisioning framework to minimize the cost of QKD services under the uncertainty and dynamics of communications in quantum-secured SAGIN. In this framework, fiber-based QKD services are deployed in passive optical networks with the advantages of low loss and high stability. Moreover, the widely covered and flexible satellite- and UAV-based QKD services are provisioned as a supplement during the real-time data transmission phase. Finally, to examine the effectiveness of the proposed concept and framework, a case study of quantum-secured SAGIN in the Metaverse is conducted where uncertain and dynamic factors of the secure communications in Metaverse applications are effectively resolved in the proposed framework.

Works on quantum computing and cryptanalysis has increased significantly in the past few years. Various constructions of quantum arithmetic circuits, as one of the essential components in the field, has also been proposed. However, there has only been a few studies on finite field inversion despite its essential use in realizing quantum algorithms, such as in Shor's algorithm for Elliptic Curve Discrete Logarith Problem (ECDLP). In this study, we propose to reduce the depth of the existing quantum Fermat's Little Theorem (FLT)-based inversion circuit for binary finite field. In particular, we propose follow a complete waterfall approach to translate the Itoh-Tsujii's variant of FLT to the corresponding quantum circuit and remove the inverse squaring operations employed in the previous work by Banegas et al., lowering the number of CNOT gates (CNOT count), which contributes to reduced overall depth and gate count. Furthermore, compare the cost by firstly constructing our method and previous work's in Qiskit quantum computer simulator and perform the resource analysis. Our approach can serve as an alternative for a time-efficient implementation.

Recent decades, the emergence of numerous novel algorithms makes it a gimmick to propose an intelligent optimization system based on metaphor, and hinders researchers from exploring the essence of search behavior in algorithms. However, it is difficult to directly discuss the search behavior of an intelligent optimization algorithm, since there are so many kinds of intelligent schemes. To address this problem, an intelligent optimization system is regarded as a simulated physical optimization system in this paper. The dynamic search behavior of such a simplified physical optimization system are investigated with quantum theory. To achieve this goal, the Schroedinger equation is employed as the dynamics equation of the optimization algorithm, which is used to describe dynamic search behaviours in the evolution process with quantum theory. Moreover, to explore the basic behaviour of the optimization system, the optimization problem is assumed to be decomposed and approximated. Correspondingly, the basic search behaviour is derived, which constitutes the basic iterative process of a simple optimization system. The basic iterative process is compared with some classical bare-bones schemes to verify the similarity of search behavior under different metaphors. The search strategies of these bare bones algorithms are analyzed through experiments.

Universal coding of integers~(UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1,H(P)\}$ is within a constant factor, where $H(P)$ is the Shannon entropy of the decreasing probability distribution $P$. However, if we consider the ratio of the expected codeword length to $H(P)$, the ratio tends to infinity by using UCI, when $H(P)$ tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized universal coding of integers~(GUCI), such that the ratio of the expected codeword length to $H(P)$ is within a constant factor $K$. First, the definition of GUCI is proposed and the coding structure of GUCI is introduced. Next, we propose a class of GUCI $\mathcal{C}$ to achieve the expansion factor $K_{\mathcal{C}}=2$ and show that the optimal GUCI is in the range $1\leq K_{\mathcal{C}}^{*}\leq 2$. Then, by comparing UCI and GUCI, we show that when the entropy is very large or $P(0)$ is not large, there are also cases where the average codeword length of GUCI is shorter. Finally, the asymptotically optimal GUCI is presented.

This paper explores the relationship between artificial intelligence and principles of distributive justice. Drawing upon the political philosophy of John Rawls, it holds that the basic structure of society should be understood as a composite of socio-technical systems, and that the operation of these systems is increasingly shaped and influenced by AI. As a consequence, egalitarian norms of justice apply to the technology when it is deployed in these contexts. These norms entail that the relevant AI systems must meet a certain standard of public justification, support citizens rights, and promote substantively fair outcomes -- something that requires specific attention be paid to the impact they have on the worst-off members of society.

The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as "quantum combs"). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate many of these algorithms by using a variational approach with parameterized quantum circuits. We find that the simulations converge well in both the noiseless and noisy scenarios, for all examples considered. Furthermore, the noisy simulations exhibit a parameter noise resilience.

We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

北京阿比特科技有限公司