亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Solving quantum impurity problems may advance our understanding of strongly correlated electron physics, but its development in multi-impurity systems has been greatly hindered due to the presence of shared bath. Here, we propose a general operation strategy to disentangle the shared bath into multiple auxiliary baths and relate the problem to a spectral decomposition problem of function matrix for applying the numerical renormalization group (NRG). We prove exactly that such decomposition is possible for models satisfying (block) circulant symmetry, and show how to construct the auxiliary baths for arbitrary impurity configuration by mapping its graph structure to the subgraph of a regular impurity configuration. We further propose an approximate decomposition algorithm to reduce the number of auxiliary baths and save the computational workload. Our work reveals a deep connection between quantum impurity problems and the graph theory, and provides a general scheme to extend the NRG applications for realistic multi-impurity systems.

相關內容

Locating an object in a sequence of frames, given its appearance in the first frame of the sequence, is a hard problem that involves many stages. Usually, state-of-the-art methods focus on bringing novel ideas in the visual encoding or relational modelling phases. However, in this work, we show that bounding box regression from learned joint search and template features is of high importance as well. While previous methods relied heavily on well-learned features representing interactions between search and template, we hypothesize that the receptive field of the input convolutional bounding box network plays an important role in accurately determining the object location. To this end, we introduce two novel bounding box regression networks: inception and deformable. Experiments and ablation studies show that our inception module installed on the recent ODTrack outperforms the latter on three benchmarks: the GOT-10k, the UAV123 and the OTB2015.

With the benefit of deep learning techniques, recent researches have made significant progress in image compression artifacts reduction. Despite their improved performances, prevailing methods only focus on learning a mapping from the compressed image to the original one but ignore the intrinsic attributes of the given compressed images, which greatly harms the performance of downstream parsing tasks. Different from these methods, we propose to decouple the intrinsic attributes into two complementary features for artifacts reduction,ie, the compression-insensitive features to regularize the high-level semantic representations during training and the compression-sensitive features to be aware of the compression degree. To achieve this, we first employ adversarial training to regularize the compressed and original encoded features for retaining high-level semantics, and we then develop the compression quality-aware feature encoder for compression-sensitive features. Based on these dual complementary features, we propose a Dual Awareness Guidance Network (DAGN) to utilize these awareness features as transformation guidance during the decoding phase. In our proposed DAGN, we develop a cross-feature fusion module to maintain the consistency of compression-insensitive features by fusing compression-insensitive features into the artifacts reduction baseline. Our method achieves an average 2.06 dB PSNR gains on BSD500, outperforming state-of-the-art methods, and only requires 29.7 ms to process one image on BSD500. Besides, the experimental results on LIVE1 and LIU4K also demonstrate the efficiency, effectiveness, and superiority of the proposed method in terms of quantitative metrics, visual quality, and downstream machine vision tasks.

Accurate forecasting of electricity consumption is essential to ensure the performance and stability of the grid, especially as the use of renewable energy increases. Forecasting electricity is challenging because it depends on many external factors, such as weather and calendar variables. While regression-based models are currently effective, the emergence of new explanatory variables and the need to refine the temporality of the signals to be forecasted is encouraging the exploration of novel methodologies, in particular deep learning models. However, Deep Neural Networks (DNNs) struggle with this task due to the lack of data points and the different types of explanatory variables (e.g. integer, float, or categorical). In this paper, we explain why and how we used Automated Deep Learning (AutoDL) to find performing DNNs for load forecasting. We ended up creating an AutoDL framework called EnergyDragon by extending the DRAGON package and applying it to load forecasting. EnergyDragon automatically selects the features embedded in the DNN training in an innovative way and optimizes the architecture and the hyperparameters of the networks. We demonstrate on the French load signal that EnergyDragon can find original DNNs that outperform state-of-the-art load forecasting methods as well as other AutoDL approaches.

Interactive notebooks, such as Jupyter, have revolutionized the field of data science by providing an integrated environment for data, code, and documentation. However, their adoption by robotics researchers and model developers has been limited. This study investigates the logging and record-keeping practices of robotics researchers, drawing parallels to the pre-interactive notebook era of data science. Through interviews with robotics researchers, we identified the reliance on diverse and often incompatible tools for managing experimental data, leading to challenges in reproducibility and data traceability. Our findings reveal that robotics researchers can benefit from a specialized version of interactive notebooks that supports comprehensive data entry, continuous context capture, and agile data staging. We propose extending interactive notebooks to better serve the needs of robotics researchers by integrating features akin to traditional lab notebooks. This adaptation aims to enhance the organization, analysis, and reproducibility of experimental data in robotics, fostering a more streamlined and efficient research workflow.

In real applications of Reinforcement Learning (RL), such as robotics, low latency and energy efficient inference is very desired. The use of sparsity and pruning for optimizing Neural Network inference, and particularly to improve energy and latency efficiency, is a standard technique. In this work, we perform a systematic investigation of applying these optimization techniques for different RL algorithms in different RL environments, yielding up to a 400-fold reduction in the size of neural networks.

Sequence parallelism (SP), which divides the sequence dimension of input tensors across multiple computational devices, is becoming key to unlocking the long-context capabilities of generative AI models. This paper investigates the state-of-the-art SP approaches, i.e. DeepSpeed-Ulysses and Ring-Attention, and proposes a unified SP approach, which is more robust to transformer model architectures and network hardware topology. This paper compares the communication and memory cost of SP and existing parallelism, including data/tensor/zero/expert/pipeline parallelism, and discusses the best practices for designing hybrid 4D parallelism involving SP. We achieved 86\% MFU on two 8xA800 nodes using SP for sequence length 208K for the LLAMA3-8B model. Our code is publicly available on \url{//github.com/feifeibear/long-context-attention}.

Humans frequently make decisions with the aid of artificially intelligent (AI) systems. A common pattern is for the AI to recommend an action to the human who retains control over the final decision. Researchers have identified ensuring that a human has appropriate reliance on an AI as a critical component of achieving complementary performance. We argue that the current definition of appropriate reliance used in such research lacks formal statistical grounding and can lead to contradictions. We propose a formal definition of reliance, based on statistical decision theory, which separates the concepts of reliance as the probability the decision-maker follows the AI's recommendation from challenges a human may face in differentiating the signals and forming accurate beliefs about the situation. Our definition gives rise to a framework that can be used to guide the design and interpretation of studies on human-AI complementarity and reliance. Using recent AI-advised decision making studies from literature, we demonstrate how our framework can be used to separate the loss due to mis-reliance from the loss due to not accurately differentiating the signals. We evaluate these losses by comparing to a baseline and a benchmark for complementary performance defined by the expected payoff achieved by a rational decision-maker facing the same decision task as the behavioral decision-makers.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司