We study the generalization behavior of Markov Logic Networks (MLNs) across relational structures of different sizes. Multiple works have noticed that MLNs learned on a given domain generalize poorly across domains of different sizes. This behavior emerges from a lack of internal consistency within an MLN when used across different domain sizes. In this paper, we quantify this inconsistency and bound it in terms of the variance of the MLN parameters. The parameter variance also bounds the KL divergence between an MLN's marginal distributions taken from different domain sizes. We use these bounds to show that maximizing the data log-likelihood while simultaneously minimizing the parameter variance corresponds to two natural notions of generalization across domain sizes. Our theoretical results apply to Exponential Random Graphs and other Markov network based relational models. Finally, we observe that solutions known to decrease the variance of the MLN parameters, like regularization and Domain-Size Aware MLNs, increase the internal consistency of the MLNs. We empirically verify our results on four different datasets, with different methods to control parameter variance, showing that controlling parameter variance leads to better generalization.
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data. Despite their efficacy, a significant drawback of GNNs lies in their limited ability to provide robust uncertainty estimates, posing challenges to their reliability in contexts where errors carry significant consequences. Moreover, GNNs typically excel in in-distribution settings, assuming that training and test data follow identical distributions: a condition often unmet in real-world graph data scenarios. In this article, we leverage conformal prediction, a widely recognized statistical technique for quantifying uncertainty by transforming predictive model outputs into prediction sets, to address uncertainty quantification in GNN predictions amidst conditional shift \footnote{Representing the change in conditional probability distribution $P(label |input)$ from source domain to target domain.} in graph-based semi-supervised learning (SSL). Additionally, we propose a novel loss function aimed at refining model predictions by minimizing conditional shift in latent stages. Termed Conditional Shift Robust (CondSR) conformal prediction for GNNs, our approach CondSR is model-agnostic and adaptable to various classification models. We validate the effectiveness of our method on standard graph benchmark datasets, integrating it with state-of-the-art GNNs in node classification tasks. The code implementation is publicly available for further exploration and experimentation.
Attention mechanisms play a crucial role in the neural revolution of Natural Language Processing (NLP). With the growth of attention-based models, several pruning techniques have been developed to identify and exploit sparseness, making these models more efficient. Most efforts focus on hard-coding attention patterns or pruning attention weights based on training data. We propose Attention Pruning (AP), a framework that observes attention patterns in a fixed dataset and generates a global sparseness mask. AP saves 90% of attention computation for language modeling and about 50% for machine translation and GLUE tasks, maintaining result quality. Our method reveals important distinctions between self- and cross-attention patterns, guiding future NLP research. Our framework can reduce both latency and memory requirements for any attention-based model, aiding in the development of improved models for existing or new NLP applications. We have demonstrated this with encoder and autoregressive transformer models using Triton GPU kernels and make our code publicly available at //github.com/irugina/AP.
Sharpness-Aware Minimization (SAM) was recently introduced as a regularization procedure for training deep neural networks. It simultaneously minimizes the fitness (or loss) function and the so-called fitness sharpness. The latter serves as a measure of the nonlinear behavior of a solution and does so by finding solutions that lie in neighborhoods having uniformly similar loss values across all fitness cases. In this contribution, we adapt SAM for tree Genetic Programming (TGP) by exploring the semantic neighborhoods of solutions using two simple approaches. By capitalizing upon perturbing input and output of program trees, sharpness can be estimated and used as a second optimization criterion during the evolution. To better understand the impact of this variant of SAM on TGP, we collect numerous indicators of the evolutionary process, including generalization ability, complexity, diversity, and a recently proposed genotype-phenotype mapping to study the amount of redundancy in trees. The experimental results demonstrate that using any of the two proposed SAM adaptations in TGP allows (i) a significant reduction of tree sizes in the population and (ii) a decrease in redundancy of the trees. When assessed on real-world benchmarks, the generalization ability of the elite solutions does not deteriorate.
Concerns for the resilience of Cyber-Physical Systems (CPS)s in critical infrastructure are growing. CPS integrate sensing, computation, control, and networking into physical objects and mission-critical services, connecting traditional infrastructure to internet technologies. While this integration increases service efficiency, it has to face the possibility of new threats posed by the new functionalities. This leads to cyber-threats, such as denial-of-service, modification of data, information leakage, spreading of malware, and many others. Cyber-resilience refers to the ability of a CPS to prepare, absorb, recover, and adapt to the adverse effects associated with cyber-threats, e.g., physical degradation of the CPS performance resulting from a cyber-attack. Cyber-resilience aims at ensuring CPS survival by keeping the core functionalities of the CPS in case of extreme events. The literature on cyber-resilience is rapidly increasing, leading to a broad variety of research works addressing this new topic. In this article, we create a systematization of knowledge about existing scientific efforts of making CPSs cyber-resilient. We systematically survey recent literature addressing cyber-resilience with a focus on techniques that may be used on CPSs. We first provide preliminaries and background on CPSs and threats, and subsequently survey state-of-the-art approaches that have been proposed by recent research work applicable to CPSs. In particular, we aim at differentiating research work from traditional risk management approaches based on the general acceptance that it is unfeasible to prevent and mitigate all possible risks threatening a CPS. We also discuss questions and research challenges, with a focus on the practical aspects of cyber-resilience, such as the use of metrics and evaluation methods as well as testing and validation environments.
The recently introduced second generation of Intel SGX (SGXv2) lifts the memory size limitations of the first generation. Theoretically, this promises to enable secure and highly efficient analytical DBMSs in the cloud. To validate this promise, in this paper, we conduct the first in-depth evaluation study of running analytical query processing algorithms inside SGXv2. Our study reveals that state-of-the-art query operators like radix joins and SIMD-based scans can indeed achieve high performance inside SGXv2 enclaves. These operations are orders of magnitude faster than joins optimized for the discontinued SGXv1 hardware. However, substantial performance overheads are still caused by subtle hardware and software differences influencing code execution inside an SGX enclave. We investigate these differences and propose new optimizations to bring the performance inside the enclave on par with native code execution outside an enclave.
Intraoperative ultrasound (iUS) imaging has the potential to improve surgical outcomes in brain surgery. However, its interpretation is challenging, even for expert neurosurgeons. In this work, we designed the first patient-specific framework that performs brain tumor segmentation in trackerless iUS. To disambiguate ultrasound imaging and adapt to the neurosurgeon's surgical objective, a patient-specific real-time network is trained using synthetic ultrasound data generated by simulating virtual iUS sweep acquisitions in pre-operative MR data. Extensive experiments performed in real ultrasound data demonstrate the effectiveness of the proposed approach, allowing for adapting to the surgeon's definition of surgical targets and outperforming non-patient-specific models, neurosurgeon experts, and high-end tracking systems. Our code is available at: \url{//github.com/ReubenDo/MHVAE-Seg}.
Concerns regarding Large Language Models (LLMs) to memorize and disclose private information, particularly Personally Identifiable Information (PII), become prominent within the community. Many efforts have been made to mitigate the privacy risks. However, the mechanism through which LLMs memorize PII remains poorly understood. To bridge this gap, we introduce a pioneering method for pinpointing PII-sensitive neurons (privacy neurons) within LLMs. Our method employs learnable binary weight masks to localize specific neurons that account for the memorization of PII in LLMs through adversarial training. Our investigations discover that PII is memorized by a small subset of neurons across all layers, which shows the property of PII specificity. Furthermore, we propose to validate the potential in PII risk mitigation by deactivating the localized privacy neurons. Both quantitative and qualitative experiments demonstrate the effectiveness of our neuron localization algorithm.
Online Continual Learning (OCL) empowers machine learning models to acquire new knowledge online across a sequence of tasks. However, OCL faces a significant challenge: catastrophic forgetting, wherein the model learned in previous tasks is substantially overwritten upon encountering new tasks, leading to a biased forgetting of prior knowledge. Moreover, the continual doman drift in sequential learning tasks may entail the gradual displacement of the decision boundaries in the learned feature space, rendering the learned knowledge susceptible to forgetting. To address the above problem, in this paper, we propose a novel rehearsal strategy, termed Drift-Reducing Rehearsal (DRR), to anchor the domain of old tasks and reduce the negative transfer effects. First, we propose to select memory for more representative samples guided by constructed centroids in a data stream. Then, to keep the model from domain chaos in drifting, a two-level angular cross-task Contrastive Margin Loss (CML) is proposed, to encourage the intra-class and intra-task compactness, and increase the inter-class and inter-task discrepancy. Finally, to further suppress the continual domain drift, we present an optional Centorid Distillation Loss (CDL) on the rehearsal memory to anchor the knowledge in feature space for each previous old task. Extensive experimental results on four benchmark datasets validate that the proposed DRR can effectively mitigate the continual domain drift and achieve the state-of-the-art (SOTA) performance in OCL.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.