When deploying artificial agents in real-world environments where they interact with humans, it is crucial that their behavior is aligned with the values, social norms or other requirements of that environment. However, many environments have implicit constraints that are difficult to specify and transfer to a learning agent. To address this challenge, we propose a novel method that utilizes the principle of maximum causal entropy to learn constraints and an optimal policy that adheres to these constraints, using demonstrations of agents that abide by the constraints. We prove convergence in a tabular setting and provide an approximation which scales to complex environments. We evaluate the effectiveness of the learned policy by assessing the reward received and the number of constraint violations, and we evaluate the learned cost function based on its transferability to other agents. Our method has been shown to outperform state-of-the-art approaches across a variety of tasks and environments, and it is able to handle problems with stochastic dynamics and a continuous state-action space.
We explore sim-to-real transfer of deep reinforcement learning controllers for a heavy vehicle with active suspensions designed for traversing rough terrain. While related research primarily focuses on lightweight robots with electric motors and fast actuation, this study uses a forestry vehicle with a complex hydraulic driveline and slow actuation. We simulate the vehicle using multibody dynamics and apply system identification to find an appropriate set of simulation parameters. We then train policies in simulation using various techniques to mitigate the sim-to-real gap, including domain randomization, action delays, and a reward penalty to encourage smooth control. In reality, the policies trained with action delays and a penalty for erratic actions perform at nearly the same level as in simulation. In experiments on level ground, the motion trajectories closely overlap when turning to either side, as well as in a route tracking scenario. When faced with a ramp that requires active use of the suspensions, the simulated and real motions are in close alignment. This shows that the actuator model together with system identification yields a sufficiently accurate model of the actuators. We observe that policies trained without the additional action penalty exhibit fast switching or bang-bang control. These present smooth motions and high performance in simulation but transfer poorly to reality. We find that policies make marginal use of the local height map for perception, showing no indications of look-ahead planning. However, the strong transfer capabilities entail that further development concerning perception and performance can be largely confined to simulation.
In this paper, we study the statistical efficiency of Reinforcement Learning in Mean-Field Control (MFC) and Mean-Field Game (MFG) with general function approximation. We introduce a new concept called Mean-Field Model-Based Eluder Dimension (MBED), which subsumes a rich family of Mean-Field RL problems. Additionally, we propose algorithms based on Optimistic Maximal Likelihood Estimation, which can return an $\epsilon$-optimal policy for MFC or an $\epsilon$-Nash Equilibrium policy for MFG, with sample complexity polynomial w.r.t. relevant parameters and independent of the number of states, actions and the number of agents. Notably, our results only require a mild assumption of Lipschitz continuity on transition dynamics and avoid strong structural assumptions in previous work. Finally, in the tabular setting, given the access to a generative model, we establish an exponential lower bound for MFC setting, while providing a novel sample-efficient model elimination algorithm to approximate equilibrium in MFG setting. Our results reveal a fundamental separation between RL for single-agent, MFC, and MFG from the sample efficiency perspective.
A variety of autonomous navigation algorithms exist that allow robots to move around in a safe and fast manner. However, many of these algorithms require parameter re-tuning when facing new environments. In this paper, we propose PTDRL, a parameter-tuning strategy that adaptively selects from a fixed set of parameters those that maximize the expected reward for a given navigation system. Our learning strategy can be used for different environments, different platforms, and different user preferences. Specifically, we attend to the problem of social navigation in indoor spaces, using a classical motion planning algorithm as our navigation system and training its parameters to optimize its behavior. Experimental results show that PTDRL can outperform other online parameter-tuning strategies.
Multi-agent reinforcement learning (MARL) has been shown effective for cooperative games in recent years. However, existing state-of-the-art methods face challenges related to sample inefficiency, brittleness regarding hyperparameters, and the risk of converging to a suboptimal Nash Equilibrium. To resolve these issues, in this paper, we propose a novel theoretical framework, named Maximum Entropy Heterogeneous-Agent Mirror Learning (MEHAML), that leverages the maximum entropy principle to design maximum entropy MARL actor-critic algorithms. We prove that algorithms derived from the MEHAML framework enjoy the desired properties of the monotonic improvement of the joint maximum entropy objective and the convergence to quantal response equilibrium (QRE). The practicality of MEHAML is demonstrated by developing a MEHAML extension of the widely used RL algorithm, HASAC (for soft actor-critic), which shows significant improvements in exploration and robustness on three challenging benchmarks: Multi-Agent MuJoCo, StarCraftII, and Google Research Football. Our results show that HASAC outperforms strong baseline methods such as HATD3, HAPPO, QMIX, and MAPPO, thereby establishing the new state of the art. See our project page at //sites.google.com/view/mehaml.
In this paper, we propose a distributed zeroth-order policy optimization method for Multi-Agent Reinforcement Learning (MARL). Existing MARL algorithms often assume that every agent can observe the states and actions of all the other agents in the network. This can be impractical in large-scale problems, where sharing the state and action information with multi-hop neighbors may incur significant communication overhead. The advantage of the proposed zeroth-order policy optimization method is that it allows the agents to compute the local policy gradients needed to update their local policy functions using local estimates of the global accumulated rewards that depend on partial state and action information only and can be obtained using consensus. Specifically, to calculate the local policy gradients, we develop a new distributed zeroth-order policy gradient estimator that relies on one-point residual-feedback which, compared to existing zeroth-order estimators that also rely on one-point feedback, significantly reduces the variance of the policy gradient estimates improving, in this way, the learning performance. We show that the proposed distributed zeroth-order policy optimization method with constant stepsize converges to the neighborhood of a policy that is a stationary point of the global objective function. The size of this neighborhood depends on the agents' learning rates, the exploration parameters, and the number of consensus steps used to calculate the local estimates of the global accumulated rewards. Moreover, we provide numerical experiments that demonstrate that our new zeroth-order policy gradient estimator is more sample-efficient compared to other existing one-point estimators.
In reinforcement learning (RL), state representations are key to dealing with large or continuous state spaces. While one of the promises of deep learning algorithms is to automatically construct features well-tuned for the task they try to solve, such a representation might not emerge from end-to-end training of deep RL agents. To mitigate this issue, auxiliary objectives are often incorporated into the learning process and help shape the learnt state representation. Bootstrapping methods are today's method of choice to make these additional predictions. Yet, it is unclear which features these algorithms capture and how they relate to those from other auxiliary-task-based approaches. In this paper, we address this gap and provide a theoretical characterization of the state representation learnt by temporal difference learning (Sutton, 1988). Surprisingly, we find that this representation differs from the features learned by Monte Carlo and residual gradient algorithms for most transition structures of the environment in the policy evaluation setting. We describe the efficacy of these representations for policy evaluation, and use our theoretical analysis to design new auxiliary learning rules. We complement our theoretical results with an empirical comparison of these learning rules for different cumulant functions on classic domains such as the four-room domain (Sutton et al, 1999) and Mountain Car (Moore, 1990).
This paper investigates an interference-aware joint path planning and power allocation mechanism for a cellular-connected unmanned aerial vehicle (UAV) in a sparse suburban environment. The UAV's goal is to fly from an initial point and reach a destination point by moving along the cells to guarantee the required quality of service (QoS). In particular, the UAV aims to maximize its uplink throughput and minimize the level of interference to the ground user equipment (UEs) connected to the neighbor cellular BSs, considering the shortest path and flight resource limitation. Expert knowledge is used to experience the scenario and define the desired behavior for the sake of the agent (i.e., UAV) training. To solve the problem, an apprenticeship learning method is utilized via inverse reinforcement learning (IRL) based on both Q-learning and deep reinforcement learning (DRL). The performance of this method is compared to learning from a demonstration technique called behavioral cloning (BC) using a supervised learning approach. Simulation and numerical results show that the proposed approach can achieve expert-level performance. We also demonstrate that, unlike the BC technique, the performance of our proposed approach does not degrade in unseen situations.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.