Existing private synthetic data generation algorithms are agnostic to downstream tasks. However, end users may have specific requirements that the synthetic data must satisfy. Failure to meet these requirements could significantly reduce the utility of the data for downstream use. We introduce a post-processing technique that improves the utility of the synthetic data with respect to measures selected by the end user, while preserving strong privacy guarantees and dataset quality. Our technique involves resampling from the synthetic data to filter out samples that do not meet the selected utility measures, using an efficient stochastic first-order algorithm to find optimal resampling weights. Through comprehensive numerical experiments, we demonstrate that our approach consistently improves the utility of synthetic data across multiple benchmark datasets and state-of-the-art synthetic data generation algorithms.
The streaming model is an abstraction of computing over massive data streams, which is a popular way of dealing with large-scale modern data analysis. In this model, there is a stream of data points, one after the other. A streaming algorithm is only allowed one pass over the data stream, and the goal is to perform some analysis during the stream while using as small space as possible. Clustering problems (such as $k$-means and $k$-median) are fundamental unsupervised machine learning primitives, and streaming clustering algorithms have been extensively studied in the past. However, since data privacy becomes a central concern in many real-world applications, non-private clustering algorithms are not applicable in many scenarios. In this work, we provide the first differentially private streaming algorithms for $k$-means and $k$-median clustering of $d$-dimensional Euclidean data points over a stream with length at most $T$ using $poly(k,d,\log(T))$ space to achieve a {\it constant} multiplicative error and a $poly(k,d,\log(T))$ additive error. In particular, we present a differentially private streaming clustering framework which only requires an offline DP coreset algorithm as a blackbox. By plugging in existing DP coreset results via Ghazi, Kumar, Manurangsi 2020 and Kaplan, Stemmer 2018, we achieve (1) a $(1+\gamma)$-multiplicative approximation with $\tilde{O}_\gamma(poly(k,d,\log(T)))$ space for any $\gamma>0$, and the additive error is $poly(k,d,\log(T))$ or (2) an $O(1)$-multiplicative approximation with $\tilde{O}(k \cdot poly(d,\log(T)))$ space and $poly(k,d,\log(T))$ additive error. In addition, our algorithmic framework is also differentially private under the continual release setting, i.e., the union of outputs of our algorithms at every timestamp is always differentially private.
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection. This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy. In this paper, we focus on the privacy and utility (measured by excess risk bounds) performances of differentially private stochastic gradient descent (SGD) algorithms in the setting of stochastic convex optimization. Specifically, we examine the pointwise problem in the low-noise setting for which we derive sharper excess risk bounds for the differentially private SGD algorithm. In the pairwise learning setting, we propose a simple differentially private SGD algorithm based on gradient perturbation. Furthermore, we develop novel utility bounds for the proposed algorithm, proving that it achieves optimal excess risk rates even for non-smooth losses. Notably, we establish fast learning rates for privacy-preserving pairwise learning under the low-noise condition, which is the first of its kind.
Text-based person search (TBPS) is a challenging task that aims to search pedestrian images with the same identity from an image gallery given a query text. In recent years, TBPS has made remarkable progress and state-of-the-art methods achieve superior performance by learning local fine-grained correspondence between images and texts. However, most existing methods rely on explicitly generated local parts to model fine-grained correspondence between modalities, which is unreliable due to the lack of contextual information or the potential introduction of noise. Moreover, existing methods seldom consider the information inequality problem between modalities caused by image-specific information. To address these limitations, we propose an efficient joint Multi-level Alignment Network (MANet) for TBPS, which can learn aligned image/text feature representations between modalities at multiple levels, and realize fast and effective person search. Specifically, we first design an image-specific information suppression module, which suppresses image background and environmental factors by relation-guided localization and channel attention filtration respectively. This module effectively alleviates the information inequality problem and realizes the alignment of information volume between images and texts. Secondly, we propose an implicit local alignment module to adaptively aggregate all pixel/word features of image/text to a set of modality-shared semantic topic centers and implicitly learn the local fine-grained correspondence between modalities without additional supervision and cross-modal interactions. And a global alignment is introduced as a supplement to the local perspective. The cooperation of global and local alignment modules enables better semantic alignment between modalities. Extensive experiments on multiple databases demonstrate the effectiveness and superiority of our MANet.
Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.
Selection bias is a common concern in epidemiologic studies. In the literature, selection bias is often viewed as a missing data problem. Popular approaches to adjust for bias due to missing data, such as inverse probability weighting, rely on the assumption that data are missing at random and can yield biased results if this assumption is violated. In observational studies with outcome data missing not at random, Heckman's sample selection model can be used to adjust for bias due to missing data. In this paper, we review Heckman's method and a similar approach proposed by Tchetgen Tchetgen and Wirth (2017). We then discuss how to apply these methods to Mendelian randomization analyses using individual-level data, with missing data for either the exposure or outcome or both. We explore whether genetic variants associated with participation can be used as instruments for selection. We then describe how to obtain missingness-adjusted Wald ratio, two-stage least squares and inverse variance weighted estimates. The two methods are evaluated and compared in simulations, with results suggesting that they can both mitigate selection bias but may yield parameter estimates with large standard errors in some settings. In an illustrative real-data application, we investigate the effects of body mass index on smoking using data from the Avon Longitudinal Study of Parents and Children.
Recently, the no-box adversarial attack, in which the attacker lacks access to the model's architecture, weights, and training data, become the most practical and challenging attack setup. However, there is an unawareness of the potential and flexibility inherent in the surrogate model selection process on no-box setting. Inspired by the burgeoning interest in utilizing foundational models to address downstream tasks, this paper adopts an innovative idea that 1) recasting adversarial attack as a downstream task. Specifically, image noise generation to meet the emerging trend and 2) introducing foundational models as surrogate models. Harnessing the concept of non-robust features, we elaborate on two guiding principles for surrogate model selection to explain why the foundational model is an optimal choice for this role. However, paradoxically, we observe that these foundational models underperform. Analyzing this unexpected behavior within the feature space, we attribute the lackluster performance of foundational models (e.g., CLIP) to their significant representational capacity and, conversely, their lack of discriminative prowess. To mitigate this issue, we propose the use of a margin-based loss strategy for the fine-tuning of foundational models on target images. The experimental results verify that our approach, which employs the basic Fast Gradient Sign Method (FGSM) attack algorithm, outstrips the performance of other, more convoluted algorithms. We conclude by advocating for the research community to consider surrogate models as crucial determinants in the effectiveness of adversarial attacks in no-box settings. The implications of our work bear relevance for improving the efficacy of such adversarial attacks and the overall robustness of AI systems.
Synthetic data has been hailed as the silver bullet for privacy preserving data analysis. If a record is not real, then how could it violate a person's privacy? In addition, deep-learning based generative models are employed successfully to approximate complex high-dimensional distributions from data and draw realistic samples from this learned distribution. It is often overlooked though that generative models are prone to memorising many details of individual training records and often generate synthetic data that too closely resembles the underlying sensitive training data, hence violating strong privacy regulations as, e.g., encountered in health care. Differential privacy is the well-known state-of-the-art framework for guaranteeing protection of sensitive individuals' data, allowing aggregate statistics and even machine learning models to be released publicly without compromising privacy. The training mechanisms however often add too much noise during the training process, and thus severely compromise the utility of these private models. Even worse, the tight privacy budgets do not allow for many training epochs so that model quality cannot be properly controlled in practice. In this paper we explore an alternative approach for privately generating data that makes direct use of the inherent stochasticity in generative models, e.g., variational autoencoders. The main idea is to appropriately constrain the continuity modulus of the deep models instead of adding another noise mechanism on top. For this approach, we derive mathematically rigorous privacy guarantees and illustrate its effectiveness with practical experiments.
Self-supervised learning (SSL) has proven effective in solving various problems by generating internal supervisory signals. Unsupervised anomaly detection, which faces the high cost of obtaining true labels, is an area that can greatly benefit from SSL. However, recent literature suggests that tuning the hyperparameters (HP) of data augmentation functions is crucial to the success of SSL-based anomaly detection (SSAD), yet a systematic method for doing so remains unknown. In this work, we propose DSV (Discordance and Separability Validation), an unsupervised validation loss to select high-performing detection models with effective augmentation HPs. DSV captures the alignment between an augmentation function and the anomaly-generating mechanism with surrogate losses, which approximate the discordance and separability of test data, respectively. As a result, the evaluation via DSV leads to selecting an effective SSAD model exhibiting better alignment, which results in high detection accuracy. We theoretically derive the degree of approximation conducted by the surrogate losses and empirically show that DSV outperforms a wide range of baselines on 21 real-world tasks.
Large language models typically undergo two training stages, pretraining and finetuning. Despite that large-scale pretraining endows the model with strong capabilities to generate natural language responses, these pretrained models can still fail to understand human instructions at times. To enhance language models' ability of interpreting and responding to instructions, instruction finetuning has emerged as a critical method in this area. Recent studies found that large language models can be finetuned to perform well even with a small amount of high-quality instruction-following data. However, the selection of high-quality datasets for finetuning language models still lacks clear guidelines to follow. In this paper, we propose InstructMining, a linear rule for evaluating instruction-following data quality. We formulate InstructMining using specific natural language indicators. To investigate the relationship between data quality and these indicators, we further conduct extensive finetuning experiments. The experiment results are then applied to estimating parameters in InstructMining. To further investigate its performance, we use InstructMining to select high-quality data from unseen datasets. Results demonstrate that InstructMining can help select relatively high-quality samples from various instruction-following datasets. Compared to models finetuned on unfiltered datasets, models finetuned on InstructMining selected datasets perform better on 42.5% cases.
Governments and industries have widely adopted differential privacy as a measure to protect users' sensitive data, creating the need for new implementations of differentially private algorithms. In order to properly test and audit these algorithms, a suite of tools for testing the property of differential privacy is needed. In this work we expand this testing suite and introduce R\'enyiTester, an algorithm that can verify if a mechanism is R\'enyi differentially private. Our algorithm computes computes a lower bound of the R\'enyi divergence between the distributions of a mechanism on neighboring datasets, only requiring black-box access to samples from the audited mechanism. We test this approach on a variety of pure and R\'enyi differentially private mechanisms with diverse output spaces and show that R\'enyiTester detects bugs in mechanisms' implementations and design flaws. While detecting that a general mechanism is differentially private is known to be NP hard, we empirically show that tools like R\'enyiTester provide a way for researchers and engineers to decrease the risk of deploying mechanisms that expose users' privacy.