Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.
The recent development of deep learning combined with compressed sensing enables fast reconstruction of undersampled MR images and has achieved state-of-the-art performance for Cartesian k-space trajectories. However, non-Cartesian trajectories such as the radial trajectory need to be transformed onto a Cartesian grid in each iteration of the network training, slowing down the training process and posing inconvenience and delay during training. Multiple iterations of nonuniform Fourier transform in the networks offset the deep learning advantage of fast inference. Current approaches typically either work on image-to-image networks or grid the non-Cartesian trajectories before the network training to avoid the repeated gridding process. However, the image-to-image networks cannot ensure the k-space data consistency in the reconstructed images and the pre-processing of non-Cartesian k-space leads to gridding errors which cannot be compensated by the network training. Inspired by the Transformer network to handle long-range dependencies in sequence transduction tasks, we propose to rearrange the radial spokes to sequential data based on the chronological order of acquisition and use the Transformer to predict unacquired radial spokes from acquired ones. We propose novel data augmentation methods to generate a large amount of training data from a limited number of subjects. The network can be generated to different anatomical structures. Experimental results show superior performance of the proposed framework compared to state-of-the-art deep neural networks.
Clustering has received much attention in Statistics and Machine learning with the aim of developing statistical models and autonomous algorithms which are capable of acquiring information from raw data in order to perform exploratory analysis.Several techniques have been developed to cluster sampled univariate vectors only considering the average value over the whole period and as such they have not been able to explore fully the underlying distribution as well as other features of the data, especially in presence of structured time series. We propose a model-based clustering technique that is based on quantile regression permitting us to cluster bivariate time series at different quantile levels. We model the within cluster density using asymmetric Laplace distribution allowing us to take into account asymmetry in the distribution of the data. We evaluate the performance of the proposed technique through a simulation study. The method is then applied to cluster time series observed from Glob-colour satellite data related to trophic status indices with aim of evaluating their temporal dynamics in order to identify homogeneous areas, in terms of trophic status, in the Gulf of Gabes.
The optimization of a wavelet-based algorithm to improve speech intelligibility along with the full data set and results are reported. The discrete-time speech signal is split into frequency sub-bands via a multi-level discrete wavelet transform. Various gains are applied to the sub-band signals before they are recombined to form a modified version of the speech. The sub-band gains are adjusted while keeping the overall signal energy unchanged, and the speech intelligibility under various background interference and simulated hearing loss conditions is enhanced and evaluated objectively and quantitatively using Google Speech-to-Text transcription. A universal set of sub-band gains can work over a range of noise-to-signal ratios up to 4.8 dB. For noise-free speech, overall intelligibility is improved, and the Google transcription accuracy is increased by 16.9 percentage points on average and 86.7 maximum by reallocating the spectral energy toward the mid-frequency sub-bands. For speech already corrupted by noise, improving intelligibility is challenging but still realizable with an increased transcription accuracy of 9.5 percentage points on average and 71.4 maximum. The proposed algorithm is implementable for real-time speech processing and comparatively simpler than previous algorithms. Potential applications include speech enhancement, hearing aids, machine listening, and a better understanding of speech intelligibility.
Lighting is a determining factor in photography that affects the style, expression of emotion, and even quality of images. Creating or finding satisfying lighting conditions, in reality, is laborious and time-consuming, so it is of great value to develop a technology to manipulate illumination in an image as post-processing. Although previous works have explored techniques based on the physical viewpoint for relighting images, extensive supervisions and prior knowledge are necessary to generate reasonable images, restricting the generalization ability of these works. In contrast, we take the viewpoint of image-to-image translation and implicitly merge ideas of the conventional physical viewpoint. In this paper, we present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image with high efficiency. In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process and to extract precise descriptors of light sources for further manipulations. We also introduce a depth-guided geometry encoder for acquiring valuable geometry- and structure-related representations once the depth information is available. Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods. The code and models are publicly available on //github.com/NK-CS-ZZL/IAN.
High-end vehicles have been furnished with a number of electronic control units (ECUs), which provide upgrading functions to enhance the driving experience. The controller area network (CAN) is a well-known protocol that connects these ECUs because of its modesty and efficiency. However, the CAN bus is vulnerable to various types of attacks. Although the intrusion detection system (IDS) is proposed to address the security problem of the CAN bus, most previous studies only provide alerts when attacks occur without knowing the specific type of attack. Moreover, an IDS is designed for a specific car model due to diverse car manufacturers. In this study, we proposed a novel deep learning model called supervised contrastive (SupCon) ResNet, which can handle multiple attack identification on the CAN bus. Furthermore, the model can be used to improve the performance of a limited-size dataset using a transfer learning technique. The capability of the proposed model is evaluated on two real car datasets. When tested with the car hacking dataset, the experiment results show that the SupCon ResNet model improves the overall false-negative rates of four types of attack by four times on average, compared to other models. In addition, the model achieves the highest F1 score at 0.9994 on the survival dataset by utilizing transfer learning. Finally, the model can adapt to hardware constraints in terms of memory size and running time.
Knowledge Distillation (KD) is a widely-used technology to inherit information from cumbersome teacher models to compact student models, consequently realizing model compression and acceleration. Compared with image classification, object detection is a more complex task, and designing specific KD methods for object detection is non-trivial. In this work, we elaborately study the behaviour difference between the teacher and student detection models, and obtain two intriguing observations: First, the teacher and student rank their detected candidate boxes quite differently, which results in their precision discrepancy. Second, there is a considerable gap between the feature response differences and prediction differences between teacher and student, indicating that equally imitating all the feature maps of the teacher is the sub-optimal choice for improving the student's accuracy. Based on the two observations, we propose Rank Mimicking (RM) and Prediction-guided Feature Imitation (PFI) for distilling one-stage detectors, respectively. RM takes the rank of candidate boxes from teachers as a new form of knowledge to distill, which consistently outperforms the traditional soft label distillation. PFI attempts to correlate feature differences with prediction differences, making feature imitation directly help to improve the student's accuracy. On MS COCO and PASCAL VOC benchmarks, extensive experiments are conducted on various detectors with different backbones to validate the effectiveness of our method. Specifically, RetinaNet with ResNet50 achieves 40.4% mAP in MS COCO, which is 3.5% higher than its baseline, and also outperforms previous KD methods.
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.
The field of few-shot learning has recently seen substantial advancements. Most of these advancements came from casting few-shot learning as a meta-learning problem. Model Agnostic Meta Learning or MAML is currently one of the best approaches for few-shot learning via meta-learning. MAML is simple, elegant and very powerful, however, it has a variety of issues, such as being very sensitive to neural network architectures, often leading to instability during training, requiring arduous hyperparameter searches to stabilize training and achieve high generalization and being very computationally expensive at both training and inference times. In this paper, we propose various modifications to MAML that not only stabilize the system, but also substantially improve the generalization performance, convergence speed and computational overhead of MAML, which we call MAML++.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.