亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

5G has expanded the traditional focus of wireless systems to embrace two new connectivity types: ultra-reliable low latency and massive communication. The technology context at the dawn of 6G is different from the past one for 5G, primarily due to the growing intelligence at the communicating nodes. This has driven the set of relevant communication problems beyond reliable transmission towards semantic and pragmatic communication. This paper puts the evolution of low-latency and massive communication towards 6G in the perspective of these new developments. At first, semantic/pragmatic communication problems are presented by drawing parallels to linguistics. We elaborate upon the relation of semantic communication to the information-theoretic problems of source/channel coding, while generalized real-time communication is put in the context of cyber-physical systems and real-time inference. The evolution of massive access towards massive closed-loop communication is elaborated upon, enabling interactive communication, learning, and cooperation among wireless sensors and actuators.

相關內容

We address the problem of network calibration adjusting miscalibrated confidences of deep neural networks. Many approaches to network calibration adopt a regularization-based method that exploits a regularization term to smooth the miscalibrated confidences. Although these approaches have shown the effectiveness on calibrating the networks, there is still a lack of understanding on the underlying principles of regularization in terms of network calibration. We present in this paper an in-depth analysis of existing regularization-based methods, providing a better understanding on how they affect to network calibration. Specifically, we have observed that 1) the regularization-based methods can be interpreted as variants of label smoothing, and 2) they do not always behave desirably. Based on the analysis, we introduce a novel loss function, dubbed ACLS, that unifies the merits of existing regularization methods, while avoiding the limitations. We show extensive experimental results for image classification and semantic segmentation on standard benchmarks, including CIFAR10, Tiny-ImageNet, ImageNet, and PASCAL VOC, demonstrating the effectiveness of our loss function.

Software architecture has been an active research field for nearly four decades, in which previous studies make significant progress such as creating methods and techniques and building tools to support software architecture practice. Despite past efforts, we have little understanding of how practitioners perform software architecture related activities, and what challenges they face. Through interviews with 32 practitioners from 21 organizations across three continents, we identified challenges that practitioners face in software architecture practice during software development and maintenance. We reported on common software architecture activities at software requirements, design, construction and testing, and maintenance stages, as well as corresponding challenges. Our study uncovers that most of these challenges center around management, documentation, tooling and process, and collects recommendations to address these challenges.

Future wireless networks need to support the increasing demands for high data rates and improved coverage. One promising solution is sectorization, where an infrastructure node (e.g., a base station) is equipped with multiple sectors employing directional communication. Although the concept of sectorization is not new, it is critical to fully understand the potential of sectorized networks, such as the rate gain achieved when multiple sectors can be simultaneously activated. In this paper, we focus on sectorized wireless networks, where sectorized infrastructure nodes with beam-steering capabilities form a multi-hop mesh network for data forwarding and routing. We present a sectorized node model and characterize the capacity region of these sectorized networks. We define the flow extension ratio and the corresponding sectorization gain, which quantitatively measure the performance gain introduced by node sectorization as a function of the network flow. Our objective is to find the optimal sectorization of each node that achieves the maximum flow extension ratio, and thus the sectorization gain. Towards this goal, we formulate the corresponding optimization problem and develop an efficient distributed algorithm that obtains the node sectorization under a given network flow with an approximation ratio of 2/3. Through extensive simulations, we evaluate the sectorization gain and the performance of the proposed algorithm in various network scenarios with varying network flows. The simulation results show that the approximate sectorization gain increases sublinearly as a function of the number of sectors per node.

We present ConceptEvo, a unified interpretation framework for deep neural networks (DNNs) that reveals the inception and evolution of learned concepts during training. Our work addresses a critical gap in DNN interpretation research, as existing methods primarily focus on post-training interpretation. ConceptEvo introduces two novel technical contributions: (1) an algorithm that generates a unified semantic space, enabling side-by-side comparison of different models during training, and (2) an algorithm that discovers and quantifies important concept evolutions for class predictions. Through a large-scale human evaluation and quantitative experiments, we demonstrate that ConceptEvo successfully identifies concept evolutions across different models, which are not only comprehensible to humans but also crucial for class predictions. ConceptEvo is applicable to both modern DNN architectures, such as ConvNeXt, and classic DNNs, such as VGGs and InceptionV3.

Terahertz wireless backhaul is expected to meet the high-speed backhaul requirements of future ultra-dense networks using millimeter-wave (mmWave) base stations (BSs). In order to achieve higher network capacity with limited resources and meet the quality of service (QoS) requirements of more users in the integrated mmWave access and terahertz backhaul network, this paper formulates a problem of maximizing the number of users successfully served in both the access and backhaul links. Since the problem is a non-linear integer optimization problem, a minimum rate ratio user association and transmission scheduling algorithm is proposed to obtain a suboptimal solution. The proposed algorithm takes the minimum rate ratio as the user association criterion and schedules first the users with fewer backhaul transmission slots. In addition, the algorithm will update the number of access transmission slots allocated to users and the access scheduling results after the backhaul scheduling phase. Numerical results show that the proposed algorithm outperforms several benchmark algorithms in terms of the number of served users and system throughput, and it can cope with a large number of bursty user requests.

We consider a network of smart sensors for an edge computing application that sample a time-varying signal and send updates to a base station for remote global monitoring. Sensors are equipped with sensing and compute, and can either send raw data or process them on-board before transmission. Limited hardware resources at the edge generate a fundamental latency-accuracy trade-off: raw measurements are inaccurate but timely, whereas accurate processed updates are available after processing delay. Hence, one needs to decide when sensors should transmit raw measurements or rely on local processing to maximize network monitoring performance. To tackle this sensing design problem, we model an estimation-theoretic optimization framework that embeds both computation and communication latency, and propose a Reinforcement Learning-based approach that dynamically allocates computational resources at each sensor. Effectiveness of our proposed approach is validated through numerical experiments motivated by smart sensing for the Internet of Drones and self-driving vehicles. In particular, we show that, under constrained computation at the base station, monitoring performance can be further improved by an online sensor selection.

Computing routing schemes that support both high throughput and low latency is one of the core challenges of network optimization. Such routes can be formalized as $h$-length flows which are defined as flows whose flow paths are restricted to have length at most $h$. Many well-studied algorithmic primitives -- such as maximal and maximum length-constrained disjoint paths -- are special cases of $h$-length flows. Likewise the optimal $h$-length flow is a fundamental quantity in network optimization, characterizing, up to poly-log factors, how quickly a network can accomplish numerous distributed primitives. In this work, we give the first efficient algorithms for computing $(1 - \epsilon)$-approximate $h$-length flows. We give deterministic algorithms that take $\tilde{O}(\text{poly}(h, \frac{1}{\epsilon}))$ parallel time and $\tilde{O}(\text{poly}(h, \frac{1}{\epsilon}) \cdot 2^{O(\sqrt{\log n})})$ distributed CONGEST time. We also give a CONGEST algorithm that succeeds with high probability and only takes $\tilde{O}(\text{poly}(h, \frac{1}{\epsilon}))$ time. Using our $h$-length flow algorithms, we give the first efficient deterministic CONGEST algorithms for the maximal length-constrained disjoint paths problem -- settling an open question of Chang and Saranurak (FOCS 2020) -- as well as essentially-optimal parallel and distributed approximation algorithms for maximum length-constrained disjoint paths. The former greatly simplifies deterministic CONGEST algorithms for computing expander decompositions. We also use our techniques to give the first efficient $(1-\epsilon)$-approximation algorithms for bipartite $b$-matching in CONGEST. Lastly, using our flow algorithms, we give the first algorithms to efficiently compute $h$-length cutmatches, an object at the heart of recent advances in length-constrained expander decompositions.

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.

北京阿比特科技有限公司