亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The class of basic feasible functionals $(\mathtt{BFF})$ is the analog of $\mathtt{FP}$ (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. $\mathtt{BFF}$ can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing $\mathtt{BFF}$ by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost-size interpretations for higher-order term rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order terms admitting a certain kind of cost-size interpretation is exactly $\mathtt{BFF}$.

相關內容

Let $\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set of $n$ points inside $\mathcal{P}$. We prove that there exists, for any $\varepsilon>0$, a set $\mathcal{C} \subset P$ of size $O(1/\varepsilon^2)$ such that the following holds: for any query point $q$ inside the polygon $\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in $\mathcal{C}$ is at least $1-\varepsilon$ times the geodesic distance to its further neighbor in $P$. Thus the set $\mathcal{C}$ can be used for answering $\varepsilon$-approximate furthest-neighbor queries with a data structure whose storage requirement is independent of the size of $P$. The coreset can be constructed in $O\left(\frac{1}{\varepsilon} \left( n\log(1/\varepsilon) + (n+m)\log(n+m)\right) \right)$ time.

We consider the Distinct Shortest Walks problem. Given two vertices $s$ and $t$ of a graph database $\mathcal{D}$ and a regular path query, enumerate all walks of minimal length from $s$ to $t$ that carry a label that conforms to the query. Usual theoretical solutions turn out to be inefficient when applied to graph models that are closer to real-life systems, in particular because edges may carry multiple labels. Indeed, known algorithms may repeat the same answer exponentially many times. We propose an efficient algorithm for multi-labelled graph databases. The preprocessing runs in $O{|\mathcal{D}|\times|\mathcal{A}|}$ and the delay between two consecutive outputs is in $O(\lambda\times|\mathcal{A}|)$, where $\mathcal{A}$ is a nondeterministic automaton representing the query and $\lambda$ is the minimal length. The algorithm can handle $\varepsilon$-transitions in $\mathcal{A}$ or queries given as regular expressions at no additional cost.

We give an isomorphism test that runs in time $n^{\operatorname{polylog}(h)}$ on all $n$-vertex graphs excluding some $h$-vertex vertex graph as a topological subgraph. Previous results state that isomorphism for such graphs can be tested in time $n^{\operatorname{polylog}(n)}$ (Babai, STOC 2016) and $n^{f(h)}$ for some function $f$ (Grohe and Marx, SIAM J. Comp., 2015). Our result also unifies and extends previous isomorphism tests for graphs of maximum degree $d$ running in time $n^{\operatorname{polylog}(d)}$ (SIAM J. Comp., 2023) and for graphs of Hadwiger number $h$ running in time $n^{\operatorname{polylog}(h)}$ (SIAM J. Comp., 2023).

We study the problem of maintaining a lightweight bounded-degree $(1+\varepsilon)$-spanner of a dynamic point set in a $d$-dimensional Euclidean space, where $\varepsilon>0$ and $d$ are arbitrary constants. In our fully-dynamic setting, points are allowed to be inserted as well as deleted, and our objective is to maintain a $(1+\varepsilon)$-spanner that has constant bounds on its maximum degree and its lightness (the ratio of its weight to that of the minimum spanning tree), while minimizing the recourse, which is the number of edges added or removed by each point insertion or deletion. We present a fully-dynamic algorithm that handles point insertion with amortized constant recourse and point deletion with amortized $O(\log\Delta)$ recourse, where $\Delta$ is the aspect ratio of the point set.

In 1991, Brenier proved a theorem that generalizes the $QR$ decomposition for square matrices -- factored as PSD $\times$ unitary -- to any vector field $F:\mathbb{R}^d\rightarrow \mathbb{R}^d$. The theorem, known as the polar factorization theorem, states that any field $F$ can be recovered as the composition of the gradient of a convex function $u$ with a measure-preserving map $M$, namely $F=\nabla u \circ M$. We propose a practical implementation of this far-reaching theoretical result, and explore possible uses within machine learning. The theorem is closely related to optimal transport (OT) theory, and we borrow from recent advances in the field of neural optimal transport to parameterize the potential $u$ as an input convex neural network. The map $M$ can be either evaluated pointwise using $u^*$, the convex conjugate of $u$, through the identity $M=\nabla u^* \circ F$, or learned as an auxiliary network. Because $M$ is, in general, not injective, we consider the additional task of estimating the ill-posed inverse map that can approximate the pre-image measure $M^{-1}$ using a stochastic generator. We illustrate possible applications of \citeauthor{Brenier1991PolarFA}'s polar factorization to non-convex optimization problems, as well as sampling of densities that are not log-concave.

The $(k, z)$-Clustering problem in Euclidean space $\mathbb{R}^d$ has been extensively studied. Given the scale of data involved, compression methods for the Euclidean $(k, z)$-Clustering problem, such as data compression and dimension reduction, have received significant attention in the literature. However, the space complexity of the clustering problem, specifically, the number of bits required to compress the cost function within a multiplicative error $\varepsilon$, remains unclear in existing literature. This paper initiates the study of space complexity for Euclidean $(k, z)$-Clustering and offers both upper and lower bounds. Our space bounds are nearly tight when $k$ is constant, indicating that storing a coreset, a well-known data compression approach, serves as the optimal compression scheme. Furthermore, our lower bound result for $(k, z)$-Clustering establishes a tight space bound of $\Theta( n d )$ for terminal embedding, where $n$ represents the dataset size. Our technical approach leverages new geometric insights for principal angles and discrepancy methods, which may hold independent interest.

An \emph{eight-partition} of a finite set of points (respectively, of a continuous mass distribution) in $\mathbb{R}^3$ consists of three planes that divide the space into $8$ octants, such that each open octant contains at most $1/8$ of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in $\mathbb{R}^3$ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in $\mathbb{R}^3$ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of $n$ points in~$\mathbb{R}^3$ (with prescribed normal direction of one of the planes) in time $O^{*}(n^{5/2})$.

We study the complexity of approximating the number of answers to a small query $\varphi$ in a large database $\mathcal{D}$. We establish an exhaustive classification into tractable and intractable cases if $\varphi$ is a conjunctive query with disequalities and negations: $\bullet$ If there is a constant bound on the arity of $\varphi$, and if the randomised Exponential Time Hypothesis (rETH) holds, then the problem has a fixed-parameter tractable approximation scheme (FPTRAS) if and only if the treewidth of $\varphi$ is bounded. $\bullet$ If the arity is unbounded and we allow disequalities only, then the problem has an FPTRAS if and only if the adaptive width of $\varphi$ (a width measure strictly more general than treewidth) is bounded; the lower bound relies on the rETH as well. Additionally we show that our results cannot be strengthened to achieve a fully polynomial randomised approximation scheme (FPRAS): We observe that, unless $\mathrm{NP} =\mathrm{RP}$, there is no FPRAS even if the treewidth (and the adaptive width) is $1$. However, if there are neither disequalities nor negations, we prove the existence of an FPRAS for queries of bounded fractional hypertreewidth, strictly generalising the recently established FPRAS for conjunctive queries with bounded hypertreewidth due to Arenas, Croquevielle, Jayaram and Riveros (STOC 2021).

We design a deterministic subexponential time algorithm that takes as input a multivariate polynomial $f$ computed by a constant-depth circuit over rational numbers, and outputs a list $L$ of circuits (of unbounded depth and possibly with division gates) that contains all irreducible factors of $f$ computable by constant-depth circuits. This list $L$ might also include circuits that are spurious: they either do not correspond to factors of $f$ or are not even well-defined, e.g. the input to a division gate is a sub-circuit that computes the identically zero polynomial. The key technical ingredient of our algorithm is a notion of the pseudo-resultant of $f$ and a factor $g$, which serves as a proxy for the resultant of $g$ and $f/g$, with the advantage that the circuit complexity of the pseudo-resultant is comparable to that of the circuit complexity of $f$ and $g$. This notion, which might be of independent interest, together with the recent results of Limaye, Srinivasan and Tavenas, helps us derandomize one key step of multivariate polynomial factorization algorithms - that of deterministically finding a good starting point for Newton Iteration for the case when the input polynomial as well as the irreducible factor of interest have small constant-depth circuits.

For positive integers $d$ and $p$ such that $d \ge p$, we obtain complete asymptotic expansions, for large $d$, of the normalizing constants for the matrix Bingham and matrix Langevin distributions on Stiefel manifolds. The accuracy of each truncated expansion is strictly increasing in $d$; also, for sufficiently large $d$, the accuracy is strictly increasing in $m$, the number of terms in the truncated expansion. We apply these results to obtain the rate of convergence of these asymptotic expansions if both $d, p \to \infty$. Using values of $d$ and $p$ arising in various data sets, we illustrate the rate of convergence of the truncated approximations as $d$ or $m$ increases. These results extend our recent work on asymptotic expansions for the normalizing constants of the high-dimensional Bingham distributions.

北京阿比特科技有限公司