亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Semi-competing risks refer to the phenomenon where a primary outcome event (such as mortality) can truncate an intermediate event (such as relapse of a disease), but not vice versa. Under the multi-state model, the primary event is decomposed to a direct outcome event and an indirect outcome event through intermediate events. Within this framework, we show that the total treatment effect on the cumulative incidence of the primary event can be decomposed into three separable pathway effects, corresponding to treatment effects on population-level transition rates between states. We next propose estimators for the counterfactual cumulative incidences of the primary event under hypothetical treatments by generalized Nelson-Aalen estimators with inverse probability weighting, and then derive the consistency and asymptotic normality of these estimators. Finally, we propose hypothesis testing procedures on these separable pathway effects based on logrank statistics. We have conducted extensive simulation studies to demonstrate the validity and superior performance of our new method compared with existing methods. As an illustration of its potential usefulness, the proposed method is applied to compare effects of different allogeneic stem cell transplantation types on overall survival after transplantation.

相關內容

The rhythm of synthetic speech is usually too smooth, which causes that the fundamental frequency (F0) of synthetic speech is significantly different from that of real speech. It is expected that the F0 feature contains the discriminative information for the fake speech detection (FSD) task. In this paper, we propose a novel F0 subband for FSD. In addition, to effectively model the F0 subband so as to improve the performance of FSD, the spatial reconstructed local attention Res2Net (SR-LA Res2Net) is proposed. Specifically, Res2Net is used as a backbone network to obtain multiscale information, and enhanced with a spatial reconstruction mechanism to avoid losing important information when the channel group is constantly superimposed. In addition, local attention is designed to make the model focus on the local information of the F0 subband. Experimental results on the ASVspoof 2019 LA dataset show that our proposed method obtains an equal error rate (EER) of 0.47% and a minimum tandem detection cost function (min t-DCF) of 0.0159, achieving the state-of-the-art performance among all of the single systems.

We consider extensions of the Newton-MR algorithm for nonconvex optimization to the settings where Hessian information is approximated. Under additive noise model on the Hessian matrix, we investigate the iteration and operation complexities of these variants to achieve first and second-order sub-optimality criteria. We show that, under certain conditions, the algorithms achieve iteration and operation complexities that match those of the exact variant. Focusing on the particular nonconvex problems satisfying Polyak-\L ojasiewicz condition, we show that our algorithm achieves a linear convergence rate. We finally compare the performance of our algorithms with several alternatives on a few machine learning problems.

The sensor placement problem is a common problem that arises when monitoring correlated phenomena, such as temperature and precipitation. Existing approaches to this problem typically use discrete optimization methods, which are computationally expensive and cannot scale to large problems. We address the sensor placement problem in correlated environments by reducing it to a regression problem that can be efficiently solved using sparse Gaussian processes (SGPs). Our approach can handle both discrete sensor placement problems-where sensors are limited to a subset of a given set of locations-and continuous sensor placement problems-where sensors can be placed anywhere in a bounded continuous region. We further generalize our approach to handle sensors with a non-point field of view and integrated observations. Our experimental results on three real-world datasets show that our approach generates sensor placements that result in reconstruction quality that is consistently on par or better than the prior state-of-the-art approach while being significantly faster. Our computationally efficient approach enables both large-scale sensor placement and fast robotic sensor placement for informative path planning algorithms.

Single-particle traces of the diffusive motion of molecules, cells, or animals are by-now routinely measured, similar to stochastic records of stock prices or weather data. Deciphering the stochastic mechanism behind the recorded dynamics is vital in understanding the observed systems. Typically, the task is to decipher the exact type of diffusion and/or to determine system parameters. The tools used in this endeavor are currently revolutionized by modern machine-learning techniques. In this Perspective we provide an overview over recently introduced methods in machine-learning for diffusive time series, most notably, those successfully competing in the Anomalous-Diffusion-Challenge. As such methods are often criticized for their lack of interpretability, we focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine. We expand the discussion by examining predictions on different out-of-distribution data. We also comment on expected future developments.

Difference-in-differences is undoubtedly one of the most widely used methods for evaluating the causal effect of an intervention in observational (i.e., nonrandomized) settings. The approach is typically used when pre- and post-exposure outcome measurements are available, and one can reasonably assume that the association of the unobserved confounder with the outcome has the same absolute magnitude in the two exposure arms, and is constant over time; a so-called parallel trends assumption. The parallel trends assumption may not be credible in many practical settings, including if the outcome is binary, a count, or polytomous, as well as when an uncontrolled confounder exhibits non-additive effects on the distribution of the outcome, even if such effects are constant over time. We introduce an alternative approach that replaces the parallel trends assumption with an odds ratio equi-confounding assumption under which an association between treatment and the potential outcome under no-treatment is identified with a well-specified generalized linear model relating the pre-exposure outcome and the exposure. Because the proposed method identifies any causal effect that is conceivably identified in the absence of confounding bias, including nonlinear effects such as quantile treatment effects, the approach is aptly called Universal Difference-in-differences (UDiD). Both fully parametric and more robust semiparametric UDiD estimators are described and illustrated in a real-world application concerning the causal effects of a Zika virus outbreak on birth rate in Brazil.

Long-term outcomes of experimental evaluations are necessarily observed after long delays. We develop semiparametric methods for combining the short-term outcomes of experiments with observational measurements of short-term and long-term outcomes, in order to estimate long-term treatment effects. We characterize semiparametric efficiency bounds for various instances of this problem. These calculations facilitate the construction of several estimators. We analyze the finite-sample performance of these estimators with a simulation calibrated to data from an evaluation of the long-term effects of a poverty alleviation program.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司