Dense formation flight with multirotor swarms is a powerful, nature-inspired flight regime with numerous applications in the realworld. However, when multirotors fly in close vertical proximity to each other, the propeller downwash from the vehicles can have a destabilising effect on each other. Unfortunately, even in a homogeneous team, an accurate model of downwash forces from one vehicle is unlikely to be sufficient for predicting aggregate forces from multiple vehicles in formation. In this work, we model the interaction patterns produced by one or more vehicles flying in close proximity to an ego-vehicle. We first present an experimental test rig designed to capture 6-DOF exogenic forces acting on a multirotor frame. We then study and characterize these measured forces as a function of the relative states of two multirotors flying various patterns in its vicinity. Our analysis captures strong non-linearities present in the aggregation of these interactions. Then, by modeling the formation as a graph, we present a novel approach for learning the force aggregation function, and contrast it against simpler linear models. Finally, we explore how our proposed models generalize when a fourth vehicle is added to the formation.
In terms of energy efficiency and computational speed, neuromorphic electronics based on non-volatile memory devices is expected to be one of most promising hardware candidates for future artificial intelligence (AI). However, catastrophic forgetting, networks rapidly overwriting previously learned weights when learning new tasks, remains as a pivotal hurdle in either digital or analog AI chips for unleashing the true power of brain-like computing. To address catastrophic forgetting in the context of online memory storage, a complex synapse model (the Benna-Fusi model) has been proposed recently[1], whose synaptic weight and internal variables evolve following a diffusion dynamics. In this work, by designing a proton transistor with a series of charge-diffusion-controlled storage components, we have experimentally realized the Benna-Fusi artificial complex synapse. The memory consolidation from coupled storage components is revealed by both numerical simulations and experimental observations. Different memory timescales for the complex synapse are engineered by the diffusion length of charge carriers, the capacity and number of coupled storage components. The advantage of the demonstrated complex synapse in both memory capacity and memory consolidation is revealed by neural network simulations of face familiarity detection. Our experimental realization of the complex synapse suggests a promising approach to enhance memory capacity and to enable continual learning.
We present a generalizable novel view synthesis method which enables modifying the visual appearance of an observed scene so rendered views match a target weather or lighting condition without any scene specific training or access to reference views at the target condition. Our method is based on a pretrained generalizable transformer architecture and is fine-tuned on synthetically generated scenes under different appearance conditions. This allows for rendering novel views in a consistent manner for 3D scenes that were not included in the training set, along with the ability to (i) modify their appearance to match the target condition and (ii) smoothly interpolate between different conditions. Experiments on real and synthetic scenes show that our method is able to generate 3D consistent renderings while making realistic appearance changes, including qualitative and quantitative comparisons. Please refer to our project page for video results: //ava-nvs.github.io/
With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of least squares (LS) problems $\min_x\|b-Ax\|_2$, where $A \in \mathbb{R}^{m\times n}$, arise in numerous application areas. Overdetermined standard least squares problems can be solved by using mixed precision within the iterative refinement method of Bj\"{o}rck, which transforms the least squares problem into an $(m+n)\times(m+n)$ ''augmented'' system. It has recently been shown that mixed precision GMRES-based iterative refinement can also be used, in an approach termed GMRES-LSIR. In practice, we often encounter types of least squares problems beyond standard least squares, including weighted least squares (WLS), $\min_x\|D^{1/2}(b-Ax)\|_2$, where $D^{1/2}$ is a diagonal matrix of weights. In this paper, we discuss a mixed precision FGMRES-WLSIR algorithm for solving WLS problems using two different preconditioners.
This paper studies stochastic control problems with the action space taken to be probability measures, with the objective penalised by the relative entropy. We identify suitable metric space on which we construct a gradient flow for the measure-valued control process, in the set of admissible controls, along which the cost functional is guaranteed to decrease. It is shown that any invariant measure of this gradient flow satisfies the Pontryagin optimality principle. If the problem we work with is sufficiently convex, the gradient flow converges exponentially fast. Furthermore, the optimal measure-valued control process admits a Bayesian interpretation which means that one can incorporate prior knowledge when solving such stochastic control problems. This work is motivated by a desire to extend the theoretical underpinning for the convergence of stochastic gradient type algorithms widely employed in the reinforcement learning community to solve control problems.
Federated Learning (FL), a distributed learning paradigm that scales on-device learning collaboratively, has emerged as a promising approach for decentralized AI applications. Local optimization methods such as Federated Averaging (FedAvg) are the most prominent methods for FL applications. Despite their simplicity and popularity, the theoretical understanding of local optimization methods is far from clear. This dissertation aims to advance the theoretical foundation of local methods in the following three directions. First, we establish sharp bounds for FedAvg, the most popular algorithm in Federated Learning. We demonstrate how FedAvg may suffer from a notion we call iterate bias, and how an additional third-order smoothness assumption may mitigate this effect and lead to better convergence rates. We explain this phenomenon from a Stochastic Differential Equation (SDE) perspective. Second, we propose Federated Accelerated Stochastic Gradient Descent (FedAc), the first principled acceleration of FedAvg, which provably improves the convergence rate and communication efficiency. Our technique uses on a potential-based perturbed iterate analysis, a novel stability analysis of generalized accelerated SGD, and a strategic tradeoff between acceleration and stability. Third, we study the Federated Composite Optimization problem, which extends the classic smooth setting by incorporating a shared non-smooth regularizer. We show that direct extensions of FedAvg may suffer from the "curse of primal averaging," resulting in slow convergence. As a solution, we propose a new primal-dual algorithm, Federated Dual Averaging, which overcomes the curse of primal averaging by employing a novel inter-client dual averaging procedure.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.
Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).