Methods for extending -- generalizing or transporting -- inferences from a randomized trial to a target population involve conditioning on a large set of covariates that is sufficient for rendering the randomized and non-randomized groups exchangeable. Yet, decision-makers are often interested in examining treatment effects in subgroups of the target population defined in terms of only a few discrete covariates. Here, we propose methods for estimating subgroup-specific potential outcome means and average treatment effects in generalizability and transportability analyses, using outcome model-based (g-formula), weighting, and augmented weighting estimators. We consider estimating subgroup-specific average treatment effects in the target population and its non-randomized subset, and provide methods that are appropriate both for nested and non-nested trial designs. As an illustration, we apply the methods to data from the Coronary Artery Surgery Study to compare the effect of surgery plus medical therapy versus medical therapy alone for chronic coronary artery disease in subgroups defined by history of myocardial infarction.
Bures-Wasserstein barycenter is a popular and promising tool in analysis of complex data like graphs, images etc. In many applications the input data are random with an unknown distribution, and uncertainty quantification becomes a crucial issue. This paper offers an approach based on multiplier bootstrap to quantify the error of approximating the true Bures--Wasserstein barycenter $Q_*$ by its empirical counterpart $Q_n$. The main results state the bootstrap validity under general assumptions on the data generating distribution $P$ and specifies the approximation rates for the case of sub-exponential $P$. The performance of the method is illustrated on synthetic data generated from the weighted stochastic block model.
Domain adaptation (DA) arises as an important problem in statistical machine learning when the source data used to train a model is different from the target data used to test the model. Recent advances in DA have mainly been application-driven and have largely relied on the idea of a common subspace for source and target data. To understand the empirical successes and failures of DA methods, we propose a theoretical framework via structural causal models that enables analysis and comparison of the prediction performance of DA methods. This framework also allows us to itemize the assumptions needed for the DA methods to have a low target error. Additionally, with insights from our theory, we propose a new DA method called CIRM that outperforms existing DA methods when both the covariates and label distributions are perturbed in the target data. We complement the theoretical analysis with extensive simulations to show the necessity of the devised assumptions. Reproducible synthetic and real data experiments are also provided to illustrate the strengths and weaknesses of DA methods when parts of the assumptions in our theory are violated.
I propose a new type of confidence interval for correct asymptotic inference after using data to select a model of interest without assuming any model is correctly specified. This hybrid confidence interval is constructed by combining techniques from the selective inference and post-selection inference literatures to yield a short confidence interval across a wide range of data realizations. I show that hybrid confidence intervals have correct asymptotic coverage, uniformly over a large class of probability distributions that do not bound scaled model parameters. I illustrate the use of these confidence intervals in the problem of inference after using the LASSO objective function to select a regression model of interest and provide evidence of their desirable length and coverage properties in small samples via a set of Monte Carlo experiments that entail a variety of different data distributions as well as an empirical application to the predictors of diabetes disease progression.
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for model selection tends to show an overestimation, and so the selective inference conditions the event that the model was selected. In this paper, we develop selective inference in propensity score analysis with a semiparametric approach, which has become a standard tool in causal inference. Specifically, for the most basic causal inference model in which the causal effect can be written as a linear sum of confounding variables, we conduct Lasso-type variable selection by adding an $\ell_1$ penalty term to the loss function that gives a semiparametric estimator. Confidence intervals are then given for the coefficients of the selected confounding variables, conditional on the event of variable selection, with asymptotic guarantees. An important property of this method is that it does not require modeling of nonparametric regression functions for the outcome variables, as is usually the case with semiparametric propensity score analysis.
Large observational data are increasingly available in disciplines such as health, economic and social sciences, where researchers are interested in causal questions rather than prediction. In this paper, we examine the problem of estimating heterogeneous treatment effects using non-parametric regression-based methods, starting from an empirical study aimed at investigating the effect of participation in school meal programs on health indicators. Firstly, we introduce the setup and the issues related to conducting causal inference with observational or non-fully randomized data, and how these issues can be tackled with the help of statistical learning tools. Then, we review and develop a unifying taxonomy of the existing state-of-the-art frameworks that allow for individual treatment effects estimation via non-parametric regression models. After presenting a brief overview on the problem of model selection, we illustrate the performance of some of the methods on three different simulated studies. We conclude by demonstrating the use of some of the methods on an empirical analysis of the school meal program data.
Randomized controlled trials are considered the gold standard to evaluate the treatment effect (estimand) for efficacy and safety. According to the recent International Council on Harmonisation (ICH)-E9 addendum (R1), intercurrent events (ICEs) need to be considered when defining an estimand, and principal stratum is one of the five strategies to handle ICEs. Qu et al. (2020, Statistics in Biopharmaceutical Research 12:1-18) proposed estimators for the adherer average causal effect (AdACE) for estimating the treatment difference for those who adhere to one or both treatments based on the causal-inference framework, and demonstrated the consistency of those estimators; however, this method requires complex custom programming related to high-dimensional numeric integrations. In this article, we implemented the AdACE estimators using multiple imputation (MI) and constructs CI through bootstrapping. A simulation study showed that the MI-based estimators provided consistent estimators with the nominal coverage probabilities of CIs for the treatment difference for the adherent populations of interest. As an illustrative example, the new method was applied to data from a real clinical trial comparing 2 types of basal insulin for patients with type 1 diabetes.
We present a general methodology for using unlabeled data to design semi supervised learning (SSL) variants of the Empirical Risk Minimization (ERM) learning process. Focusing on generalized linear regression, we analyze of the effectiveness of our SSL approach in improving prediction performance. The key ideas are carefully considering the null model as a competitor, and utilizing the unlabeled data to determine signal-noise combinations where SSL outperforms both supervised learning and the null model. We then use SSL in an adaptive manner based on estimation of the signal and noise. In the special case of linear regression with Gaussian covariates, we prove that the non-adaptive SSL version is in fact not capable of improving on both the supervised estimator and the null model simultaneously, beyond a negligible O(1/n) term. On the other hand, the adaptive model presented in this work, can achieve a substantial improvement over both competitors simultaneously, under a variety of settings. This is shown empirically through extensive simulations, and extended to other scenarios, such as non-Gaussian covariates, misspecified linear regression, or generalized linear regression with non-linear link functions.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.
Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.