亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces Grounded Image Text Matching with Mismatched Relation (GITM-MR), a novel visual-linguistic joint task that evaluates the relation understanding capabilities of transformer-based pre-trained models. GITM-MR requires a model to first determine if an expression describes an image, then localize referred objects or ground the mismatched parts of the text. We provide a benchmark for evaluating pre-trained models on this task, with a focus on the challenging settings of limited data and out-of-distribution sentence lengths. Our evaluation demonstrates that pre-trained models lack data efficiency and length generalization ability. To address this, we propose the Relation-sensitive Correspondence Reasoning Network (RCRN), which incorporates relation-aware reasoning via bi-directional message propagation guided by language structure. RCRN can be interpreted as a modular program and delivers strong performance in both length generalization and data efficiency.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · GNN · 模型并行 · · MoDELS ·
2023 年 9 月 24 日

Communication is a key bottleneck for distributed graph neural network (GNN) training. This paper proposes GNNPipe, a new approach that scales the distributed full-graph deep GNN training. Being the first to use layer-level model parallelism for GNN training, GNNPipe partitions GNN layers among GPUs, each device performs the computation for a disjoint subset of consecutive GNN layers on the whole graph. Compared to graph parallelism with each GPU handling a graph partition, GNNPipe reduces the communication volume by a factor of the number of GNN layers. GNNPipe overcomes the unique challenges for pipelined layer-level model parallelism on the whole graph by partitioning it into dependent chunks, allowing the use of historical vertex embeddings, and applying specific training techniques to ensure convergence. We also propose a hybrid approach by combining GNNPipe with graph parallelism to handle large graphs, achieve better computer resource utilization and ensure model convergence. We build a general GNN training system supporting all three parallelism setting. Extensive experiments show that our method reduces the per-epoch training time by up to 2.45x (on average 1.58x) and reduces the communication volume and overhead by up to 22.89x and 27.21x (on average 8.69x and 11.60x), respectively, while achieving a comparable level of model accuracy and convergence speed compared to graph parallelism.

We present a novel approach to robust pose graph optimization based on Graduated Non-Convexity (GNC). Unlike traditional GNC-based methods, the proposed approach employs an adaptive shape function using B-spline to optimize the shape of the robust kernel. This aims to reduce GNC iterations, boosting computational speed without compromising accuracy. When integrated with the open-source riSAM algorithm, the method demonstrates enhanced efficiency across diverse datasets. Accompanying open-source code aims to encourage further research in this area. //github.com/SNU-DLLAB/AGNC-PGO

This paper proposes a novel hardware beamforming architecture, which is capable of utilizing a different number of Radio Frequency (RF) chains in different parts of the bandwidth. It also shows that a proportional fairness scheduler will effectively utilize the high rank part of the bandwidth in a multi-user setting, thus operating more efficiently and effectively than classical beamforming schemes.

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baseline methods on a multi-label text classification task. This is applied to the use case of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification with PLMs is frequently reported to outperform classification with a classification head, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the industry taxonomy; (b) During fine-tuning, multiple labels must be provided in an arbitrary order; (c) The model provides a binary decision for each label, rather than an appropriate confidence score. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head. This improves performance significantly, while also reducing computational costs during inference. The results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities.

This paper presents a Hierarchical Reinforcement Learning methodology tailored for optimizing CubeSat task scheduling in Low Earth Orbits (LEO). Incorporating a high-level policy for global task distribution and a low-level policy for real-time adaptations as a safety mechanism, our approach integrates the Similarity Attention-based Encoder (SABE) for task prioritization and an MLP estimator for energy consumption forecasting. Integrating this mechanism creates a safe and fault-tolerant system for CubeSat task scheduling. Simulation results validate the Hierarchical Reinforcement Learning superior convergence and task success rate, outperforming both the MADDPG model and traditional random scheduling across multiple CubeSat configurations.

This paper provides an insight into the possibility of scene recognition from a video sequence with a small set of repeated shooting locations (such as in television series) using artificial neural networks. The basic idea of the presented approach is to select a set of frames from each scene, transform them by a pre-trained singleimage pre-processing convolutional network, and classify the scene location with subsequent layers of the neural network. The considered networks have been tested and compared on a dataset obtained from The Big Bang Theory television series. We have investigated different neural network layers to combine individual frames, particularly AveragePooling, MaxPooling, Product, Flatten, LSTM, and Bidirectional LSTM layers. We have observed that only some of the approaches are suitable for the task at hand.

We propose in this paper a Quantized Distilled Low-Rank Neural Radiance Field (QDLR-NeRF) representation for the task of light field compression. While existing compression methods encode the set of light field sub-aperture images, our proposed method learns an implicit scene representation in the form of a Neural Radiance Field (NeRF), which also enables view synthesis. To reduce its size, the model is first learned under a Low-Rank (LR) constraint using a Tensor Train (TT) decomposition within an Alternating Direction Method of Multipliers (ADMM) optimization framework. To further reduce the model's size, the components of the tensor train decomposition need to be quantized. However, simultaneously considering the optimization of the NeRF model with both the low-rank constraint and rate-constrained weight quantization is challenging. To address this difficulty, we introduce a network distillation operation that separates the low-rank approximation and the weight quantization during network training. The information from the initial LR-constrained NeRF (LR-NeRF) is distilled into a model of much smaller dimension (DLR-NeRF) based on the TT decomposition of the LR-NeRF. We then learn an optimized global codebook to quantize all TT components, producing the final QDLR-NeRF. Experimental results show that our proposed method yields better compression efficiency compared to state-of-the-art methods, and it additionally has the advantage of allowing the synthesis of any light field view with high quality.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司