We prove that $1-o(1)$ fraction of all $k$-SAT functions on $n$ Boolean variables are unate (i.e., monotone after first negating some variables), for any fixed positive integer $k$ and as $n \to \infty$. This resolves a conjecture by Bollob\'as, Brightwell, and Leader from 2003.
We give a poly-time algorithm for the $k$-edge-connected spanning subgraph ($k$-ECSS) problem that returns a solution of cost no greater than the cheapest $(k+10)$-ECSS on the same graph. Our approach enhances the iterative relaxation framework with a new ingredient, which we call ghost values, that allows for high sparsity in intermediate problems. Our guarantees improve upon the best-known approximation factor of $2$ for $k$-ECSS whenever the optimal value of $(k+10)$-ECSS is close to that of $k$-ECSS. This is a property that holds for the closely related problem $k$-edge-connected spanning multi-subgraph ($k$-ECSM), which is identical to $k$-ECSS except edges can be selected multiple times at the same cost. As a consequence, we obtain a $\left(1+O\left(\frac{1}{k}\right)\right)$-approximation for $k$-ECSM, which resolves a conjecture of Pritchard and improves upon a recent $1+O\left(\frac{1}{k}\right)$ approximation of Karlin, Klein, Oveis Gharan, and Zhang. Moreover, we present a matching lower bound for $k$-ECSM, showing that our approximation ratio is tight up to the constant factor in $O\left(\frac{1}{k}\right)$, unless $P=NP$.
We present polynomial-time SDP-based algorithms for the following problem: For fixed $k \leq \ell$, given a real number $\epsilon>0$ and a graph $G$ that admits a $k$-colouring with a $\rho$-fraction of the edges coloured properly, it returns an $\ell$-colouring of $G$ with an $(\alpha \rho - \epsilon)$-fraction of the edges coloured properly in polynomial time in $G$ and $1 / \epsilon$. Our algorithms are based on the algorithms of Frieze and Jerrum [Algorithmica'97] and of Karger, Motwani and Sudan [JACM'98]. For $k = 2, \ell = 3$, our algorithm achieves an approximation ratio $\alpha = 1$, which is the best possible. When $k$ is fixed and $\ell$ grows large, our algorithm achieves an approximation ratio of $\alpha = 1 - o(1 / \ell)$. When $k, \ell$ are both large, our algorithm achieves an approximation ratio of $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell) - O(1 / k^2)$; if we fix $d = \ell - k$ and allow $k, \ell$ to grow large, this is $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell)$. By extending the results of Khot, Kindler, Mossel and O'Donnell [SICOMP'07] to the promise setting, we show that for large $k$ and $\ell$, assuming Khot's Unique Games Conjecture (UGC), it is \NP-hard to achieve an approximation ratio $\alpha$ greater than $1 - 1 / \ell + 2 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided that $\ell$ is bounded by a function that is $o(\exp(\sqrt[3]{k}))$. For the case where $d = \ell - k$ is fixed, this bound matches the performance of our algorithm up to $o(\ln \ell / k \ell)$. Furthermore, by extending the results of Guruswami and Sinop [ToC'13] to the promise setting, we prove that it is NP-hard to achieve an approximation ratio greater than $1 - 1 / \ell + 8 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided again that $\ell$ is bounded as before (but this time without assuming the UGC).
We study the high-order local discontinuous Galerkin (LDG) method for the $p$-Laplace equation. We reformulate our spatial discretization as an equivalent convex minimization problem and use a preconditioned gradient descent method as the nonlinear solver. For the first time, a weighted preconditioner that provides $hk$-independent convergence is applied in the LDG setting. For polynomial order $k \geqslant 1$, we rigorously establish the solvability of our scheme and provide a priori error estimates in a mesh-dependent energy norm. Our error estimates are under a different and non-equivalent distance from existing LDG results. For arbitrarily high-order polynomials under the assumption that the exact solution has enough regularity, the error estimates demonstrate the potential for high-order accuracy. Our numerical results exhibit the desired convergence speed facilitated by the preconditioner, and we observe best convergence rates in gradient variables in alignment with linear LDG, and optimal rates in the primal variable when $1 < p \leqslant 2$.
In arXiv:1811.04313, a definition of determinant is formalized in the bounded arithmetic $VNC^{2}$. Following the presentation of [Gathen, 1993], we can formalize a definition of matrix rank in the same bounded arithmetic. In this article, we define a bounded arithmetic $LAPPD$, and show that $LAPPD$ seems to be a natural arithmetic theory formalizing the treatment of rank function following Mulmuley's algorithm. Furthermore, we give a formalization of rank in $VNC^{2}$ by interpreting $LAPPD$ by $VNC^{2}$.
Graph burning is a graph process that models the spread of social contagion. Initially, all the vertices of a graph $G$ are unburnt. At each step, an unburnt vertex is put on fire and the fire from burnt vertices of the previous step spreads to their adjacent unburnt vertices. This process continues till all the vertices are burnt. The burning number $b(G)$ of the graph $G$ is the minimum number of steps required to burn all the vertices in the graph. The burning number conjecture by Bonato et al. states that for a connected graph $G$ of order $n$, its burning number $b(G) \leq \lceil \sqrt{n} \rceil$. It is easy to observe that in order to burn a graph it is enough to burn its spanning tree. Hence it suffices to prove that for any tree $T$ of order $n$, its burning number $b(T) \leq \lceil \sqrt{n} \rceil$ where $T$ is the spanning tree of $G$. It was proved in 2018 that $b(T) \leq \lceil \sqrt{n + n_2 + 1/4} +1/2 \rceil$ for a tree $T$ where $n_2$ is the number of degree $2$ vertices in $T$. In this paper, we provide an algorithm to burn a tree and we improve the existing bound using this algorithm. We prove that $b(T)\leq \lceil \sqrt{n + n_2 + 8}\rceil -1$ which is an improved bound for $n\geq 50$. We also provide an algorithm to burn some subclasses of the binary tree and prove the burning number conjecture for the same.
We compute the weight distribution of the ${\mathcal R} (4,9)$ by combining the approach described in D. V. Sarwate's Ph.D. thesis from 1973 with knowledge on the affine equivalence classification of Boolean functions. To solve this problem posed, e.g., in the MacWilliams and Sloane book [p. 447], we apply a refined approach based on the classification of Boolean quartic forms in $8$ variables due to Ph. Langevin and G. Leander, and recent results on the classification of the quotient space ${\mathcal R} (4,7)/{\mathcal R} (2,7)$ due to V. Gillot and Ph. Langevin.
For a graph $ G = (V, E) $ with vertex set $ V $ and edge set $ E $, a function $ f : V \rightarrow \{0, 1, 2, . . . , diam(G)\} $ is called a \emph{broadcast} on $ G $. For each vertex $ u \in V $, if there exists a vertex $ v $ in $ G $ (possibly, $ u = v $) such that $ f (v) > 0 $ and $ d(u, v) \leq f (v) $, then $ f $ is called a \textit{dominating broadcast} on $ G $. The \textit{cost} of the dominating broadcast $f$ is the quantity $ \sum_{v\in V}f(v) $. The minimum cost of a dominating broadcast is the \textit{broadcast domination number} of $G$, denoted by $ \gamma_{b}(G) $. A \textit{multipacking} is a set $ S \subseteq V $ in a graph $ G = (V, E) $ such that for every vertex $ v \in V $ and for every integer $ r \geq 1 $, the ball of radius $ r $ around $ v $ contains at most $ r $ vertices of $ S $, that is, there are at most $ r $ vertices in $ S $ at a distance at most $ r $ from $ v $ in $ G $. The \textit{multipacking number} of $ G $ is the maximum cardinality of a multipacking of $ G $ and is denoted by $ mp(G) $. We show that, for any cactus graph $G$, $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$. We also show that $\gamma_b(G)-mp(G)$ can be arbitrarily large for cactus graphs by constructing an infinite family of cactus graphs such that the ratio $\gamma_b(G)/mp(G)=4/3$, with $mp(G)$ arbitrarily large. This result shows that, for cactus graphs, we cannot improve the bound $\gamma_b(G)\leq \frac{3}{2}mp(G)+\frac{11}{2}$ to a bound in the form $\gamma_b(G)\leq c_1\cdot mp(G)+c_2$, for any constant $c_1<4/3$ and $c_2$. Moreover, we provide an $O(n)$-time algorithm to construct a multipacking of $G$ of size at least $ \frac{2}{3}mp(G)-\frac{11}{3} $, where $n$ is the number of vertices of the graph $G$.
Given a convex function $f$ on $\mathbb{R}^n$ with an integer minimizer, we show how to find an exact minimizer of $f$ using $O(n^2 \log n)$ calls to a separation oracle and $O(n^4 \log n)$ time. The previous best polynomial time algorithm for this problem given in [Jiang, SODA 2021, JACM 2022] achieves $O(n^2\log\log n/\log n)$ oracle complexity. However, the overall runtime of Jiang's algorithm is at least $\widetilde{\Omega}(n^8)$, due to expensive sub-routines such as the Lenstra-Lenstra-Lov\'asz (LLL) algorithm [Lenstra, Lenstra, Lov\'asz, Math. Ann. 1982] and random walk based cutting plane method [Bertsimas, Vempala, JACM 2004]. Our significant speedup is obtained by a nontrivial combination of a faster version of the LLL algorithm due to [Neumaier, Stehl\'e, ISSAC 2016] that gives similar guarantees, the volumetric center cutting plane method (CPM) by [Vaidya, FOCS 1989] and its fast implementation given in [Jiang, Lee, Song, Wong, STOC 2020]. For the special case of submodular function minimization (SFM), our result implies a strongly polynomial time algorithm for this problem using $O(n^3 \log n)$ calls to an evaluation oracle and $O(n^4 \log n)$ additional arithmetic operations. Both the oracle complexity and the number of arithmetic operations of our more general algorithm are better than the previous best-known runtime algorithms for this specific problem given in [Lee, Sidford, Wong, FOCS 2015] and [Dadush, V\'egh, Zambelli, SODA 2018, MOR 2021].
We introduce and analyse a family of hash and predicate functions that are more likely to produce collisions for small reducible configurations of vectors. These may offer practical improvements to lattice sieving for short vectors. In particular, in one asymptotic regime the family exhibits significantly different convergent behaviour than existing hash functions and predicates.
This paper is concerned with the decay rate of $e^{A^{-1}t}A^{-1}$ for the generator $A$ of an exponentially stable $C_0$-semigroup on a Hilbert space. To estimate the decay rate of $e^{A^{-1}t}A^{-1}$, we apply a bounded functional calculus. Using this estimate and Lyapunov equations, we also study the quantified asymptotic behavior of the Crank-Nicolson scheme with smooth initial data. A similar argument is applied to a polynomially stable $C_0$-semigroup whose generator is normal.