The placement of grab bars for elderly users is based largely on ADA building codes and does not reflect the large differences in height, mobility, and muscle power between individual persons. The goal of this study is to see if there are any correlations between an elderly user's preferred handlebar pose and various demographic indicators, self-rated mobility for tasks requiring postural change, and biomechanical markers. For simplicity, we consider only the case where the handlebar is positioned directly in front of the user, as this confines the relevant body kinematics to a 2D sagittal plane. Previous eldercare devices have been constructed to position a handlebar in various poses in space. Our work augments these devices and adds to the body of knowledge by assessing how the handlebar should be positioned based on data on actual elderly people instead of simulations.
In this study, the structural problems of the YOLOv5 model were analyzed emphatically. Based on the characteristics of fine defects in artificial leather, four innovative structures, namely DFP, IFF, AMP, and EOS, were designed. These advancements led to the proposal of a high-performance artificial leather fine defect detection model named YOLOD. YOLOD demonstrated outstanding performance on the artificial leather defect dataset, achieving an impressive increase of 11.7% - 13.5% in AP_50 compared to YOLOv5, along with a significant reduction of 5.2% - 7.2% in the error detection rate. Moreover, YOLOD also exhibited remarkable performance on the general MS-COCO dataset, with an increase of 0.4% - 2.6% in AP compared to YOLOv5, and a rise of 2.5% - 4.1% in AP_S compared to YOLOv5. These results demonstrate the superiority of YOLOD in both artificial leather defect detection and general object detection tasks, making it a highly efficient and effective model for real-world applications.
Training dialogue systems often entails dealing with noisy training examples and unexpected user inputs. Despite their prevalence, there currently lacks an accurate survey of dialogue noise, nor is there a clear sense of the impact of each noise type on task performance. This paper addresses this gap by first constructing a taxonomy of noise encountered by dialogue systems. In addition, we run a series of experiments to show how different models behave when subjected to varying levels of noise and types of noise. Our results reveal that models are quite robust to label errors commonly tackled by existing denoising algorithms, but that performance suffers from dialogue-specific noise. Driven by these observations, we design a data cleaning algorithm specialized for conversational settings and apply it as a proof-of-concept for targeted dialogue denoising.
Detecting changes that occurred in a pair of 3D airborne LiDAR point clouds, acquired at two different times over the same geographical area, is a challenging task because of unmatching spatial supports and acquisition system noise. Most recent attempts to detect changes on point clouds are based on supervised methods, which require large labelled data unavailable in real-world applications. To address these issues, we propose an unsupervised approach that comprises two components: Neural Field (NF) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes. NF offer a grid-agnostic representation to encode bi-temporal point clouds with unmatched spatial support that can be regularised to increase high-frequency details and reduce noise. The reconstructions at each timestamp are compared at arbitrary spatial scales, leading to a significant increase in detection capabilities. We apply our method to a benchmark dataset of simulated LiDAR point clouds for urban sprawling. The dataset offers different challenging scenarios with different resolutions, input modalities and noise levels, allowing a multi-scenario comparison of our method with the current state-of-the-art. We boast the previous methods on this dataset by a 10% margin in intersection over union metric. In addition, we apply our methods to a real-world scenario to identify illegal excavation (looting) of archaeological sites and confirm that they match findings from field experts.
We investigate the fixed-budget best-arm identification (BAI) problem for linear bandits in a potentially non-stationary environment. Given a finite arm set $\mathcal{X}\subset\mathbb{R}^d$, a fixed budget $T$, and an unpredictable sequence of parameters $\left\lbrace\theta_t\right\rbrace_{t=1}^{T}$, an algorithm will aim to correctly identify the best arm $x^* := \arg\max_{x\in\mathcal{X}}x^\top\sum_{t=1}^{T}\theta_t$ with probability as high as possible. Prior work has addressed the stationary setting where $\theta_t = \theta_1$ for all $t$ and demonstrated that the error probability decreases as $\exp(-T /\rho^*)$ for a problem-dependent constant $\rho^*$. But in many real-world $A/B/n$ multivariate testing scenarios that motivate our work, the environment is non-stationary and an algorithm expecting a stationary setting can easily fail. For robust identification, it is well-known that if arms are chosen randomly and non-adaptively from a G-optimal design over $\mathcal{X}$ at each time then the error probability decreases as $\exp(-T\Delta^2_{(1)}/d)$, where $\Delta_{(1)} = \min_{x \neq x^*} (x^* - x)^\top \frac{1}{T}\sum_{t=1}^T \theta_t$. As there exist environments where $\Delta_{(1)}^2/ d \ll 1/ \rho^*$, we are motivated to propose a novel algorithm $\mathsf{P1}$-$\mathsf{RAGE}$ that aims to obtain the best of both worlds: robustness to non-stationarity and fast rates of identification in benign settings. We characterize the error probability of $\mathsf{P1}$-$\mathsf{RAGE}$ and demonstrate empirically that the algorithm indeed never performs worse than G-optimal design but compares favorably to the best algorithms in the stationary setting.
In today's world, where societal challenges in the areas of digitalization, demographic change and sustainability are becoming increasingly complex, new innovation structures are needed to meet these challenges. Living Labs or also Real World Laboratories prove to be such. Through their applied methods such as co-creation, they integrate users into research, making it more user-centric. Which other research infrastructures exist and how they can be differentiated is presented in this paper on the basis of a systematic literature research. Furthermore, methods for user integration are examined and provided in the form of an overview.
The Weighted Path Order of Yamada is a powerful technique for proving termination. It is also supported by CeTA, a certifier for checking untrusted termination proofs. To be more precise, CeTA contains a verified function that computes for two terms whether one of them is larger than the other for a given WPO, i.e., where all parameters of the WPO have been fixed. The problem of this verified function is its exponential runtime in the worst case. Therefore, in this work we develop a polynomial time implementation of WPO that is based on memoization. It also improves upon an earlier verified implementation of the Recursive Path Order: the RPO-implementation uses full terms as keys for the memory, a design which simplified the soundness proofs, but has some runtime overhead. In this work, keys are just numbers, so that the lookup in the memory is faster. Although trivial on paper, this change introduces some challenges for the verification task.
Many planning formalisms allow for mixing numeric with Boolean effects. However, most of these formalisms are undecidable. In this paper, we will analyze possible causes for this undecidability by studying the number of different occurrences of actions, an approach that proved useful for metric fluents before. We will start by reformulating a numeric planning problem known as restricted tasks as a search problem. We will then show how an NP-complete fragment of numeric planning can be found by using heuristics. To achieve this, we will develop the idea of multi-valued partial order plans, a least committing compact representation for (sequential and parallel) plans. Finally, we will study optimization techniques for this representation to incorporate soft preconditions.
We present Factor Fields, a novel framework for modeling and representing signals. Factor Fields decomposes a signal into a product of factors, each represented by a classical or neural field representation which operates on transformed input coordinates. This decomposition results in a unified framework that accommodates several recent signal representations including NeRF, Plenoxels, EG3D, Instant-NGP, and TensoRF. Additionally, our framework allows for the creation of powerful new signal representations, such as the "Dictionary Field" (DiF) which is a second contribution of this paper. Our experiments show that DiF leads to improvements in approximation quality, compactness, and training time when compared to previous fast reconstruction methods. Experimentally, our representation achieves better image approximation quality on 2D image regression tasks, higher geometric quality when reconstructing 3D signed distance fields, and higher compactness for radiance field reconstruction tasks. Furthermore, DiF enables generalization to unseen images/3D scenes by sharing bases across signals during training which greatly benefits use cases such as image regression from sparse observations and few-shot radiance field reconstruction.
Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.