亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For years, SIMD/vector units have enhanced the capabilities of modern CPUs in High-Performance Computing (HPC) and mobile technology. Typical commercially-available SIMD units process up to 8 double-precision elements with one instruction. The optimal vector width and its impact on CPU throughput due to memory latency and bandwidth remain challenging research areas. This study examines the behavior of four computational kernels on a RISC-V core connected to a customizable vector unit, capable of operating up to 256 double precision elements per instruction. The four codes have been purposefully selected to represent non-dense workloads: SpMV, BFS, PageRank, FFT. The experimental setup allows us to measure their performance while varying the vector length, the memory latency, and bandwidth. Our results not only show that larger vector lengths allow for better tolerance of limitations in the memory subsystem but also offer hope to code developers beyond dense linear algebra.

相關內容

This article introduces the R package concrete, which implements a recently developed targeted maximum likelihood estimator (TMLE) for the cause-specific absolute risks of time-to-event outcomes measured in continuous time. Cross-validated Super Learner machine learning ensembles are used to estimate propensity scores and conditional cause-specific hazards, which are then targeted to produce robust and efficient plug-in estimates of the effects of static or dynamic interventions on a binary treatment given at baseline quantified as risk differences or risk ratios. Influence curve-based asymptotic inference is provided for TMLE estimates and simultaneous confidence bands can be computed for target estimands spanning multiple multiple times or events. In this paper we review the one-step continuous-time TMLE methodology as it is situated in an overarching causal inference workflow, describe its implementation, and demonstrate the use of the package on the PBC dataset.

Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.

The emerging trend of AR/VR places great demands on 3D content. However, most existing software requires expertise and is difficult for novice users to use. In this paper, we aim to create sketch-based modeling tools for user-friendly 3D modeling. We introduce Reality3DSketch with a novel application of an immersive 3D modeling experience, in which a user can capture the surrounding scene using a monocular RGB camera and can draw a single sketch of an object in the real-time reconstructed 3D scene. A 3D object is generated and placed in the desired location, enabled by our novel neural network with the input of a single sketch. Our neural network can predict the pose of a drawing and can turn a single sketch into a 3D model with view and structural awareness, which addresses the challenge of sparse sketch input and view ambiguity. We conducted extensive experiments synthetic and real-world datasets and achieved state-of-the-art (SOTA) results in both sketch view estimation and 3D modeling performance. According to our user study, our method of performing 3D modeling in a scene is $>$5x faster than conventional methods. Users are also more satisfied with the generated 3D model than the results of existing methods.

Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participants built personalized government programs by combining policies proposed by the candidates of the 2022 French and Brazilian presidential elections. We use this data to explore aggregates complementing those used in social choice theory, finding that a metric of divisiveness, which is uncorrelated with traditional aggregation functions, can identify polarizing proposals. These metrics provide a score for the divisiveness of each proposal that can be estimated in the absence of data on the demographic characteristics of participants and that explains the issues that divide a population. These findings suggest divisiveness metrics can be useful complements to traditional aggregation functions in direct forms of digital participation.

We present MsATL: the first tool for deciding the satisfiability of Alternating-time Temporal Logic (ATL) with imperfect information. MsATL combines SAT Modulo Monotonic Theories solvers with existing ATL model checkers: MCMAS and STV. The tool can deal with various semantics of ATL, including perfect and imperfect information, and can handle additional practical requirements. MsATL can be applied for synthesis of games that conform to a given specification, with the synthesised game often being minimal.

In recent years, the combination of artificial intelligence (AI) and unmanned aerial vehicles (UAVs) has brought about advancements in various areas. This comprehensive analysis explores the changing landscape of AI-powered UAVs and friendly computing in their applications. It covers emerging trends, futuristic visions, and the inherent challenges that come with this relationship. The study examines how AI plays a role in enabling navigation, detecting and tracking objects, monitoring wildlife, enhancing precision agriculture, facilitating rescue operations, conducting surveillance activities, and establishing communication among UAVs using environmentally conscious computing techniques. By delving into the interaction between AI and UAVs, this analysis highlights the potential for these technologies to revolutionise industries such as agriculture, surveillance practices, disaster management strategies, and more. While envisioning possibilities, it also takes a look at ethical considerations, safety concerns, regulatory frameworks to be established, and the responsible deployment of AI-enhanced UAV systems. By consolidating insights from research endeavours in this field, this review provides an understanding of the evolving landscape of AI-powered UAVs while setting the stage for further exploration in this transformative domain.

Robust and accurate localization for Unmanned Aerial Vehicles (UAVs) is an essential capability to achieve autonomous, long-range flights. Current methods either rely heavily on GNSS, face limitations in visual-based localization due to appearance variances and stylistic dissimilarities between camera and reference imagery, or operate under the assumption of a known initial pose. In this paper, we developed a GNSS-denied localization approach for UAVs that harnesses both Visual-Inertial Odometry (VIO) and Visual Place Recognition (VPR) using a foundation model. This paper presents a novel vision-based pipeline that works exclusively with a nadir-facing camera, an Inertial Measurement Unit (IMU), and pre-existing satellite imagery for robust, accurate localization in varied environments and conditions. Our system demonstrated average localization accuracy within a $20$-meter range, with a minimum error below $1$ meter, under real-world conditions marked by drastic changes in environmental appearance and with no assumption of the vehicle's initial pose. The method is proven to be effective and robust, addressing the crucial need for reliable UAV localization in GNSS-denied environments, while also being computationally efficient enough to be deployed on resource-constrained platforms.

GPU-embedded systems have gained popularity across various domains due to their efficient power consumption. However, in order to meet the demands of real-time or time-consuming applications running on these systems, it is crucial for them to be tuned to exhibit high performance. This paper addresses the issue by developing and comparing two tuning methodologies on GPU-embedded systems, and also provides performance insights for developers and researchers seeking to optimize applications running on these architectures. We focus on parallel prefix operations, such as FFT, scan primitives, and tridiagonal system solvers, which are performance-critical components in many applications. The study introduces an analytical model-driven tuning methodology and a Machine Learning (ML)-based tuning methodology. We evaluate the performance of the two tuning methodologies for different parallel prefix implementations of the BPLG library in an NVIDIA Jetson system, and compare their performance to the ones achieved through an exhaustive search. The findings shed light on the best strategies for handling the open challenge of performance portability for major computational patterns among server and embedded devices, providing practical guidance for offline and online tuning. We also address the existing gap in performance studies for parallel computational patterns in GPU-embedded systems by comparing the BPLG performance against other state-of-the-art libraries, including CUSPARSE, CUB, and CUFFT.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司