亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

TorchAudio is an open-source audio and speech processing library built for PyTorch. It aims to accelerate the research and development of audio and speech technologies by providing well-designed, easy-to-use, and performant PyTorch components. Its contributors routinely engage with users to understand their needs and fulfill them by developing impactful features. Here, we survey TorchAudio's development principles and contents and highlight key features we include in its latest version (2.1): self-supervised learning pre-trained pipelines and training recipes, high-performance CTC decoders, speech recognition models and training recipes, advanced media I/O capabilities, and tools for performing forced alignment, multi-channel speech enhancement, and reference-less speech assessment. For a selection of these features, through empirical studies, we demonstrate their efficacy and show that they achieve competitive or state-of-the-art performance.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Modern machine learning techniques in the natural language processing domain can be used to automatically generate scripts for goal-oriented dialogue systems. The current article presents a general framework for studying the automatic generation of scripts for goal-oriented dialogue systems. A method for preprocessing dialog data sets in JSON format is described. A comparison is made of two methods for extracting user intent based on BERTopic and latent Dirichlet allocation. A comparison has been made of two implemented algorithms for classifying statements of users of a goal-oriented dialogue system based on logistic regression and BERT transformer models. The BERT transformer approach using the bert-base-uncased model showed better results for the three metrics Precision (0.80), F1-score (0.78) and Matthews correlation coefficient (0.74) in comparison with other methods.

Recently introduced ControlNet has the ability to steer the text-driven image generation process with geometric input such as human 2D pose, or edge features. While ControlNet provides control over the geometric form of the instances in the generated image, it lacks the capability to dictate the visual appearance of each instance. We present FineControlNet to provide fine control over each instance's appearance while maintaining the precise pose control capability. Specifically, we develop and demonstrate FineControlNet with geometric control via human pose images and appearance control via instance-level text prompts. The spatial alignment of instance-specific text prompts and 2D poses in latent space enables the fine control capabilities of FineControlNet. We evaluate the performance of FineControlNet with rigorous comparison against state-of-the-art pose-conditioned text-to-image diffusion models. FineControlNet achieves superior performance in generating images that follow the user-provided instance-specific text prompts and poses compared with existing methods. Project webpage: //samsunglabs.github.io/FineControlNet-project-page

Modeling excess remains to be an important topic in insurance data modeling. Among the alternatives of modeling excess, the Peaks Over Threshold (POT) framework with Generalized Pareto distribution (GPD) is regarded as an efficient approach due to its flexibility. However, the selection of an appropriate threshold for such framework is a major difficulty. To address such difficulty, we applied several accumulation tests along with Anderson-Darling test to determine an optimal threshold. Based on the selected thresholds, the fitted GPD with the estimated quantiles can be found. We applied the procedure to the well-known Norwegian Fire Insurance data and constructed the confidence intervals for the Value-at-Risks (VaR). The accumulation test approach provides satisfactory performance in modeling the high quantiles of Norwegian Fire Insurance data compared to the previous graphical methods.

IoT devices trigger real-time applications by receiving data from their vicinity. Modeling these applications in the form of workflows enables automating their procedure, especially for the business and industry. Depending on the features of the applications, they can be modeled in different forms, including single workflow, multiple workflows, and workflow ensembles. Since the whole data must be sent to the cloud servers for processing and storage, cloud computing has many challenges for executing real-time applications, such as bandwidth limitation, delay, and privacy. Edge paradigms are introduced to address the challenges of cloud computing in executing IoT applications. Executing IoT applications using device-to-device communications in edge paradigms requiring direct communication between devices in a network with a graph topology. While there is no simulator supporting simulating workflow-based applications and device-to-device communication, this paper introduces a toolkit for simulating resource management of scientific workflows in distributed environments with graph topology called WIDESim.The graph topology of WIDESim enables D2D communications in edge paradigms. WIDESim can work with all three different structures of scientific workflows: single, multiple workflows, and workflow ensembles. It has no constraint on the topology of the distributed environment. Also, unlike most existing network simulators, this simulator enables dynamic resource management and scheduling. We have validated the performance of WIDESim in comparison to standard simulators and workflow management tools. Also, we have evaluated its performance in different scenarios of distributed computing systems using different types of workflow-based applications. The results indicate that WIDESim's performance is close to existing standard simulators besides its improvements.

We present a novel deep learning method for estimating time-dependent parameters in Markov processes through discrete sampling. Departing from conventional machine learning, our approach reframes parameter approximation as an optimization problem using the maximum likelihood approach. Experimental validation focuses on parameter estimation in multivariate regression and stochastic differential equations (SDEs). Theoretical results show that the real solution is close to SDE with parameters approximated using our neural network-derived under specific conditions. Our work contributes to SDE-based model parameter estimation, offering a versatile tool for diverse fields.

We study computational aspects of repulsive Gibbs point processes, which are probabilistic models of interacting particles in a finite-volume region of space. We introduce an approach for reducing a Gibbs point process to the hard-core model, a well-studied discrete spin system. Given an instance of such a point process, our reduction generates a random graph drawn from a natural geometric model. We show that the partition function of a hard-core model on graphs generated by the geometric model concentrates around the partition function of the Gibbs point process. Our reduction allows us to use a broad range of algorithms developed for the hard-core model to sample from the Gibbs point process and approximate its partition function. This is, to the extend of our knowledge, the first approach that deals with pair potentials of unbounded range. We compare the resulting algorithms with recently established results and study further properties of the random geometric graphs with respect to the hard-core model.

Although Gaussian processes (GPs) with deep kernels have been successfully used for meta-learning in regression tasks, its uncertainty estimation performance can be poor. We propose a meta-learning method for calibrating deep kernel GPs for improving regression uncertainty estimation performance with a limited number of training data. The proposed method meta-learns how to calibrate uncertainty using data from various tasks by minimizing the test expected calibration error, and uses the knowledge for unseen tasks. We design our model such that the adaptation and calibration for each task can be performed without iterative procedures, which enables effective meta-learning. In particular, a task-specific uncalibrated output distribution is modeled by a GP with a task-shared encoder network, and it is transformed to a calibrated one using a cumulative density function of a task-specific Gaussian mixture model (GMM). By integrating the GP and GMM into our neural network-based model, we can meta-learn model parameters in an end-to-end fashion. Our experiments demonstrate that the proposed method improves uncertainty estimation performance while keeping high regression performance compared with the existing methods using real-world datasets in few-shot settings.

Forecast combination involves using multiple forecasts to create a single, more accurate prediction. Recently, feature-based forecasting has been employed to either select the most appropriate forecasting models or to optimize the weights of their combination. In this paper, we present a multi-task optimization paradigm that focuses on solving both problems simultaneously and enriches current operational research approaches to forecasting. In essence, it incorporates an additional learning and optimization task into the standard feature-based forecasting approach, focusing on the identification of an optimal set of forecasting methods. During the training phase, an optimization model with linear constraints and quadratic objective function is employed to identify accurate and diverse methods for each time series. Moreover, within the training phase, a neural network is used to learn the behavior of that optimization model. Once training is completed the candidate set of methods is identified using the network. The proposed approach elicits the essential role of diversity in feature-based forecasting and highlights the interplay between model combination and model selection when optimizing forecasting ensembles. Experimental results on a large set of series from the M4 competition dataset show that our proposal enhances point forecast accuracy compared to state-of-the-art methods.

This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司