Air transport poses significant environmental challenges, particularly regarding the role of flight contrails in climate change due to their potential global warming impact. Traditional computer vision techniques struggle under varying remote sensing image conditions, and conventional machine learning approaches using convolutional neural networks are limited by the scarcity of hand-labeled contrail datasets. To address these issues, we employ few-shot transfer learning to introduce an innovative approach for accurate contrail segmentation with minimal labeled data. Our methodology leverages backbone segmentation models pre-trained on extensive image datasets and fine-tuned using an augmented contrail-specific dataset. We also introduce a novel loss function, termed SR Loss, which enhances contrail line detection by transforming the image space into Hough space. This transformation results in a significant performance improvement over generic image segmentation loss functions. Our approach offers a robust solution to the challenges posed by limited labeled data and significantly advances the state of contrail detection models.
Automatic modulation classification (AMC) plays a critical role in wireless communications by autonomously classifying signals transmitted over the radio spectrum. Deep learning (DL) techniques are increasingly being used for AMC due to their ability to extract complex wireless signal features. However, DL models are computationally intensive and incur high inference latencies. This paper proposes the application of early exiting (EE) techniques for DL models used for AMC to accelerate inference. We present and analyze four early exiting architectures and a customized multi-branch training algorithm for this problem. Through extensive experimentation, we show that signals with moderate to high signal-to-noise ratios (SNRs) are easier to classify, do not require deep architectures, and can therefore leverage the proposed EE architectures. Our experimental results demonstrate that EE techniques can significantly reduce the inference speed of deep neural networks without sacrificing classification accuracy. We also thoroughly study the trade-off between classification accuracy and inference time when using these architectures. To the best of our knowledge, this work represents the first attempt to apply early exiting methods to AMC, providing a foundation for future research in this area.
Current approaches for collision avoidance and space traffic management face many challenges, mainly due to the continuous increase in the number of objects in orbit and the lack of scalable and automated solutions. To avoid catastrophic incidents, satellite owners/operators must be aware of their assets' collision risk to decide whether a collision avoidance manoeuvre needs to be performed. This process is typically executed through the use of warnings issued in the form of CDMs which contain information about the event, such as the expected TCA and the probability of collision. Our previous work presented a statistical learning model that allowed us to answer two important questions: (1) Will any new conjunctions be issued in the next specified time interval? (2) When and with what uncertainty will the next CDM arrive? However, the model was based on an empirical Bayes homogeneous Poisson process, which assumes that the arrival rates of CDMs are constant over time. In fact, the rate at which the CDMs are issued depends on the behaviour of the objects as well as on the screening process performed by third parties. Thus, in this work, we extend the previous study and propose a Bayesian non-homogeneous Poisson process implemented with high precision using a Probabilistic Programming Language to fully describe the underlying phenomena. We compare the proposed solution with a baseline model to demonstrate the added value of our approach. The results show that this problem can be successfully modelled by our Bayesian non-homogeneous Poisson Process with greater accuracy, contributing to the development of automated collision avoidance systems and helping operators react timely but sparingly with satellite manoeuvres.
A portable imaging system for the on-site detection of shoulder injury is necessary to identify its extent and avoid its development to severe condition. Here, firstly a microwave tomography system is introduced using state-of-the-art numerical modeling and parallel computing for imaging different tissues in the shoulder. The results show that the proposed method is capable of accurately detecting and localizing rotator cuff tears of different size. In the next step, an efficient design in terms of computing time and complexity is proposed to detect the variations in the injured model with respect to the healthy model. The method is based on finite element discretization and uses parallel preconditioners from the domain decomposition method to accelerate computations. It is implemented using the open source FreeFEM software.
Human pose estimation is a critical component in autonomous driving and parking, enhancing safety by predicting human actions. Traditional frame-based cameras and videos are commonly applied, yet, they become less reliable in scenarios under high dynamic range or heavy motion blur. In contrast, event cameras offer a robust solution for navigating these challenging contexts. Predominant methodologies incorporate event cameras into learning frameworks by accumulating events into event frames. However, such methods tend to marginalize the intrinsic asynchronous and high temporal resolution characteristics of events. This disregard leads to a loss in essential temporal dimension data, crucial for safety-critical tasks associated with dynamic human activities. To address this issue and to unlock the 3D potential of event information, we introduce two 3D event representations: the Rasterized Event Point Cloud (RasEPC) and the Decoupled Event Voxel (DEV). The RasEPC collates events within concise temporal slices at identical positions, preserving 3D attributes with statistical cues and markedly mitigating memory and computational demands. Meanwhile, the DEV representation discretizes events into voxels and projects them across three orthogonal planes, utilizing decoupled event attention to retrieve 3D cues from the 2D planes. Furthermore, we develop and release EV-3DPW, a synthetic event-based dataset crafted to facilitate training and quantitative analysis in outdoor scenes. On the public real-world DHP19 dataset, our event point cloud technique excels in real-time mobile predictions, while the decoupled event voxel method achieves the highest accuracy. Experiments reveal our proposed 3D representation methods' superior generalization capacities against traditional RGB images and event frame techniques. Our code and dataset are available at //github.com/MasterHow/EventPointPose.
The dominant paradigm in 3D human pose estimation that lifts a 2D pose sequence to 3D heavily relies on long-term temporal clues (i.e., using a daunting number of video frames) for improved accuracy, which incurs performance saturation, intractable computation and the non-causal problem. This can be attributed to their inherent inability to perceive spatial context as plain 2D joint coordinates carry no visual cues. To address this issue, we propose a straightforward yet powerful solution: leveraging the readily available intermediate visual representations produced by off-the-shelf (pre-trained) 2D pose detectors -- no finetuning on the 3D task is even needed. The key observation is that, while the pose detector learns to localize 2D joints, such representations (e.g., feature maps) implicitly encode the joint-centric spatial context thanks to the regional operations in backbone networks. We design a simple baseline named Context-Aware PoseFormer to showcase its effectiveness. Without access to any temporal information, the proposed method significantly outperforms its context-agnostic counterpart, PoseFormer, and other state-of-the-art methods using up to hundreds of video frames regarding both speed and precision. Project page: //qitaozhao.github.io/ContextAware-PoseFormer
Electric vehicle (EV) adoption in long-distance logistics faces challenges such as range anxiety and uneven distribution of charging stations. Two pivotal questions emerge: How can EVs be efficiently routed in a charging network considering range limits, charging speeds and prices? And, can the existing charging infrastructure sustain the increasing demand for EVs in long-distance logistics? This paper addresses these questions by introducing a novel theoretical and computational framework to study the EV network flow problems. We present an EV network flow model that incorporates range constraints and nonlinear charging rates, and identify conditions under which polynomial-time solutions can be obtained for optimal single EV routing, maximum flow, and minimum-cost flow problems. Our findings provide insights for optimizing EV routing in logistics, ensuring an efficient and sustainable future.
Language models are typically evaluated on their success at predicting the distribution of specific words in specific contexts. Yet linguistic knowledge also encodes relationships between contexts, allowing inferences between word distributions. We investigate the degree to which pre-trained Transformer-based large language models (LLMs) represent such relationships, focusing on the domain of argument structure. We find that LLMs perform well in generalizing the distribution of a novel noun argument between related contexts that were seen during pre-training (e.g., the active object and passive subject of the verb spray), succeeding by making use of the semantically-organized structure of the embedding space for word embeddings. However, LLMs fail at generalizations between related contexts that have not been observed during pre-training, but which instantiate more abstract, but well-attested structural generalizations (e.g., between the active object and passive subject of an arbitrary verb). Instead, in this case, LLMs show a bias to generalize based on linear order. This finding points to a limitation with current models and points to a reason for which their training is data-intensive.s reported here are available at //github.com/clay-lab/structural-alternations.
Planning robot dexterity is challenging due to the non-smoothness introduced by contacts, intricate fine motions, and ever-changing scenarios. We present a hierarchical planning framework for dexterous robotic manipulation (HiDex). This framework explores in-hand and extrinsic dexterity by leveraging contacts. It generates rigid-body motions and complex contact sequences. Our framework is based on Monte-Carlo Tree Search and has three levels: 1) planning object motions and environment contact modes; 2) planning robot contacts; 3) path evaluation and control optimization. This framework offers two main advantages. First, it allows efficient global reasoning over high-dimensional complex space created by contacts. It solves a diverse set of manipulation tasks that require dexterity, both intrinsic (using the fingers) and extrinsic (also using the environment), mostly in seconds. Second, our framework allows the incorporation of expert knowledge and customizable setups in task mechanics and models. It requires minor modifications to accommodate different scenarios and robots. Hence, it provides a flexible and generalizable solution for various manipulation tasks. As examples, we analyze the results on 7 hand configurations and 15 scenarios. We demonstrate 8 tasks on two robot platforms.
Multimodal representation learning poses significant challenges in capturing informative and distinct features from multiple modalities. Existing methods often struggle to exploit the unique characteristics of each modality due to unified multimodal annotations. In this study, we propose Self-MI in the self-supervised learning fashion, which also leverage Contrastive Predictive Coding (CPC) as an auxiliary technique to maximize the Mutual Information (MI) between unimodal input pairs and the multimodal fusion result with unimodal inputs. Moreover, we design a label generation module, $ULG_{MI}$ for short, that enables us to create meaningful and informative labels for each modality in a self-supervised manner. By maximizing the Mutual Information, we encourage better alignment between the multimodal fusion and the individual modalities, facilitating improved multimodal fusion. Extensive experiments on three benchmark datasets including CMU-MOSI, CMU-MOSEI, and SIMS, demonstrate the effectiveness of Self-MI in enhancing the multimodal fusion task.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.