亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the years, 2D GANs have achieved great successes in photorealistic portrait generation. However, they lack 3D understanding in the generation process, thus they suffer from multi-view inconsistency problem. To alleviate the issue, many 3D-aware GANs have been proposed and shown notable results, but 3D GANs struggle with editing semantic attributes. The controllability and interpretability of 3D GANs have not been much explored. In this work, we propose two solutions to overcome these weaknesses of 2D GANs and 3D-aware GANs. We first introduce a novel 3D-aware GAN, SURF-GAN, which is capable of discovering semantic attributes during training and controlling them in an unsupervised manner. After that, we inject the prior of SURF-GAN into StyleGAN to obtain a high-fidelity 3D-controllable generator. Unlike existing latent-based methods allowing implicit pose control, the proposed 3D-controllable StyleGAN enables explicit pose control over portrait generation. This distillation allows direct compatibility between 3D control and many StyleGAN-based techniques (e.g., inversion and stylization), and also brings an advantage in terms of computational resources. Our codes are available at //github.com/jgkwak95/SURF-GAN.

相關內容

Numerical interpolation for scattered data aims to estimate values for target points based on those of some observed points. Traditional approaches produce estimations through constructing an interpolation function that combines multiple basis functions. These approaches require the basis functions to be pre-defined explicitly, thus greatly limiting their applications in practical scenarios. Recent advances exhibit an alternative strategy that learns interpolation functions directly from observed points using machine learning techniques, say deep neural networks. This strategy, although promising, cannot effectively exploit the correlations between observed points and target points as it treats these types of points separately. Here, we present a learning-based approach to numerical interpolation using encoder representations of Transformers (thus called NIERT). NIERT treats the value of each target point as a masked token, which enables processing target points and observed points in a unified fashion. By calculating the partial self-attention between target points and observed points at each layer, NIERT gains advantages of exploiting the correlations among these points and, more importantly, avoiding the unexpected interference of target points on observed points. NIERT also uses the pre-training technique to further improve its accuracy. On three representative datasets, including two synthetic datasets and a real-world dataset, NIERT outperforms the existing approaches, e.g., on the TFRD-ADlet dataset for temperature field reconstruction, NIERT achieves an MAE of $1.897\times 10^{-3}$, substantially better than the transformer-based approach (MAE: $27.074\times 10^{-3}$). These results clearly demonstrate the accuracy of NIERT and its potential to apply in multiple practical fields.

Tactile recognition of 3D objects remains a challenging task. Compared to 2D shapes, the complex geometry of 3D surfaces requires richer tactile signals, more dexterous actions, and more advanced encoding techniques. In this work, we propose TANDEM3D, a method that applies a co-training framework for exploration and decision making to 3D object recognition with tactile signals. Starting with our previous work, which introduced a co-training paradigm for 2D recognition problems, we introduce a number of advances that enable us to scale up to 3D. TANDEM3D is based on a novel encoder that builds 3D object representation from contact positions and normals using PointNet++. Furthermore, by enabling 6DOF movement, TANDEM3D explores and collects discriminative touch information with high efficiency. Our method is trained entirely in simulation and validated with real-world experiments. Compared to state-of-the-art baselines, TANDEM3D achieves higher accuracy and a lower number of actions in recognizing 3D objects and is also shown to be more robust to different types and amounts of sensor noise. Video is available at //jxu.ai/tandem3d.

Recent studies have shown that autoencoder-based models can achieve superior performance on anomaly detection tasks due to their excellent ability to fit complex data in an unsupervised manner. In this work, we propose a novel autoencoder-based model, named StackVAE-G that can significantly bring the efficiency and interpretability to multivariate time series anomaly detection. Specifically, we utilize the similarities across the time series channels by the stacking block-wise reconstruction with a weight-sharing scheme to reduce the size of learned models and also relieve the overfitting to unknown noises in the training data. We also leverage a graph learning module to learn a sparse adjacency matrix to explicitly capture the stable interrelation structure among multiple time series channels for the interpretable pattern reconstruction of interrelated channels. Combining these two modules, we introduce the stacking block-wise VAE (variational autoencoder) with GNN (graph neural network) model for multivariate time series anomaly detection. We conduct extensive experiments on three commonly used public datasets, showing that our model achieves comparable (even better) performance with the state-of-the-art modelsand meanwhile requires much less computation and memory cost. Furthermore, we demonstrate that the adjacency matrix learned by our model accurately captures the interrelation among multiple channels, and can provide valuable information for failure diagnosis applications.

The real-time dynamic environment perception has become vital for autonomous robots in crowded spaces. Although the popular voxel-based mapping methods can efficiently represent 3D obstacles with arbitrarily complex shapes, they can hardly distinguish between static and dynamic obstacles, leading to the limited performance of obstacle avoidance. While plenty of sophisticated learning-based dynamic obstacle detection algorithms exist in autonomous driving, the quadcopter's limited computation resources cannot achieve real-time performance using those approaches. To address these issues, we propose a real-time dynamic obstacle tracking and mapping system for quadcopter obstacle avoidance using an RGB-D camera. The proposed system first utilizes a depth image with an occupancy voxel map to generate potential dynamic obstacle regions as proposals. With the obstacle region proposals, the Kalman filter and our continuity filter are applied to track each dynamic obstacle. Finally, the environment-aware trajectory prediction method is proposed based on the Markov chain using the states of tracked dynamic obstacles. We implemented the proposed system with our custom quadcopter and navigation planner. The simulation and physical experiments show that our methods can successfully track and represent obstacles in dynamic environments in real-time and safely avoid obstacles.

Joint synthesis of images and segmentation masks with generative adversarial networks (GANs) is promising to reduce the effort needed for collecting image data with pixel-wise annotations. However, to learn high-fidelity image-mask synthesis, existing GAN approaches first need a pre-training phase requiring large amounts of image data, which limits their utilization in restricted image domains. In this work, we take a step to reduce this limitation, introducing the task of one-shot image-mask synthesis. We aim to generate diverse images and their segmentation masks given only a single labelled example, and assuming, contrary to previous models, no access to any pre-training data. To this end, inspired by the recent architectural developments of single-image GANs, we introduce our OSMIS model which enables the synthesis of segmentation masks that are precisely aligned to the generated images in the one-shot regime. Besides achieving the high fidelity of generated masks, OSMIS outperforms state-of-the-art single-image GAN models in image synthesis quality and diversity. In addition, despite not using any additional data, OSMIS demonstrates an impressive ability to serve as a source of useful data augmentation for one-shot segmentation applications, providing performance gains that are complementary to standard data augmentation techniques. Code is available at //github.com/ boschresearch/one-shot-synthesis

Facial 3D Morphable Models are a main computer vision subject with countless applications and have been highly optimized in the last two decades. The tremendous improvements of deep generative networks have created various possibilities for improving such models and have attracted wide interest. Moreover, the recent advances in neural radiance fields, are revolutionising novel-view synthesis of known scenes. In this work, we present a facial 3D Morphable Model, which exploits both of the above, and can accurately model a subject's identity, pose and expression and render it in arbitrary illumination. This is achieved by utilizing a powerful deep style-based generator to overcome two main weaknesses of neural radiance fields, their rigidity and rendering speed. We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field. We create a vast labelled synthetic dataset of facial renders, and train the network on these data, so that it can accurately model and generalize on facial identity, pose and appearance. Finally, we show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.

Optical coherence tomography (OCT) is a micrometer-scale, volumetric imaging modality that has become a clinical standard in ophthalmology. OCT instruments image by raster-scanning a focused light spot across the retina, acquiring sequential cross-sectional images to generate volumetric data. Patient eye motion during the acquisition poses unique challenges: Non-rigid, discontinuous distortions can occur, leading to gaps in data and distorted topographic measurements. We present a new distortion model and a corresponding fully-automatic, reference-free optimization strategy for computational motion correction in orthogonally raster-scanned, retinal OCT volumes. Using a novel, domain-specific spatiotemporal parametrization of forward-warping displacements, eye motion can be corrected continuously for the first time. Parameter estimation with temporal regularization improves robustness and accuracy over previous spatial approaches. We correct each A-scan individually in 3D in a single mapping, including repeated acquisitions used in OCT angiography protocols. Specialized 3D forward image warping reduces median runtime to < 9 s, fast enough for clinical use. We present a quantitative evaluation on 18 subjects with ocular pathology and demonstrate accurate correction during microsaccades. Transverse correction is limited only by ocular tremor, whereas submicron repeatability is achieved axially (0.51 um median of medians), representing a dramatic improvement over previous work. This allows assessing longitudinal changes in focal retinal pathologies as a marker of disease progression or treatment response, and promises to enable multiple new capabilities such as supersampled/super-resolution volume reconstruction and analysis of pathological eye motion occuring in neurological diseases.

Video prediction is an important yet challenging problem; burdened with the tasks of generating future frames and learning environment dynamics. Recently, autoregressive latent video models have proved to be a powerful video prediction tool, by separating the video prediction into two sub-problems: pre-training an image generator model, followed by learning an autoregressive prediction model in the latent space of the image generator. However, successfully generating high-fidelity and high-resolution videos has yet to be seen. In this work, we investigate how to train an autoregressive latent video prediction model capable of predicting high-fidelity future frames with minimal modification to existing models, and produce high-resolution (256x256) videos. Specifically, we scale up prior models by employing a high-fidelity image generator (VQ-GAN) with a causal transformer model, and introduce additional techniques of top-k sampling and data augmentation to further improve video prediction quality. Despite the simplicity, the proposed method achieves competitive performance to state-of-the-art approaches on standard video prediction benchmarks with fewer parameters, and enables high-resolution video prediction on complex and large-scale datasets. Videos are available at //sites.google.com/view/harp-videos/home.

Existing deep learning real denoising methods require a large amount of noisy-clean image pairs for supervision. Nonetheless, capturing a real noisy-clean dataset is an unacceptable expensive and cumbersome procedure. To alleviate this problem, this work investigates how to generate realistic noisy images. Firstly, we formulate a simple yet reasonable noise model that treats each real noisy pixel as a random variable. This model splits the noisy image generation problem into two sub-problems: image domain alignment and noise domain alignment. Subsequently, we propose a novel framework, namely Pixel-level Noise-aware Generative Adversarial Network (PNGAN). PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space to perform image domain alignment. Simultaneously, PNGAN establishes a pixel-level adversarial training to conduct noise domain alignment. Additionally, for better noise fitting, we present an efficient architecture Simple Multi-scale Network (SMNet) as the generator. Qualitative validation shows that noise generated by PNGAN is highly similar to real noise in terms of intensity and distribution. Quantitative experiments demonstrate that a series of denoisers trained with the generated noisy images achieve state-of-the-art (SOTA) results on four real denoising benchmarks. Part of codes, pre-trained models, and results are available at //github.com/caiyuanhao1998/PNGAN for comparisons.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

北京阿比特科技有限公司