亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. Let $H$ be a fixed graph with possible loops. In the list homomorphism problem, denoted by \textsc{LHom}($H$), the instance is a graph $G$, whose every vertex is equipped with a subset of $V(H)$, called list. We ask whether there exists a homomorphism from $G$ to $H$, such that every vertex from $G$ is mapped to a vertex from its list. We study the complexity of the \textsc{LHom}($H$) problem in intersection graphs of various geometric objects. In particular, we are interested in answering the question for what graphs $H$ and for what types of geometric objects, the \textsc{LHom}($H$) problem can be solved in time subexponential in the number of vertices of the instance. We fully resolve this question for string graphs, i.e., intersection graphs of continuous curves in the plane. Quite surprisingly, it turns out that the dichotomy exactly coincides with the analogous dichotomy for graphs excluding a fixed path as an induced subgraph [Okrasa, Rz\k{a}\.zewski, STACS 2021]. Then we turn our attention to subclasses of string graphs, defined as intersections of fat objects. We observe that the (non)existence of subexponential-time algorithms in such classes is closely related to the size $\mathrm{mrc}(H)$ of a maximum reflexive clique in $H$, i.e., maximum number of pairwise adjacent vertices, each of which has a loop. We study the maximum value of $\mathrm{mrc}(H)$ that guarantees the existence of a subexponential-time algorithm for \textsc{LHom}($H$) in intersection graphs of (i) convex fat objects, (ii) fat similarly-sized objects, and (iii) disks. In the first two cases we obtain optimal results, by giving matching algorithms and lower bounds. Finally, we discuss possible extensions of our results to weighted generalizations of \textsc{LHom}($H$).

相關內容

In this paper, we have proposed a public key cryptography using recursive block matrices involving generalized Fibonacci numbers over a finite field Fp. For this, we define multinacci block matrices, a type of upper triangular matrix involving multinacci matrices at diagonal places and obtained some of its algebraic properties. Moreover, we have set up a method for key element agreement at end users, which makes the cryptography more efficient. The proposed cryptography comes with a large keyspace and its security relies on the Discrete Logarithm Problem(DLP).

In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.

The key relay protocol (KRP) plays an important role in improving the performance and the security of quantum key distribution (QKD) networks. On the other hand, there is also an existing research field called secure network coding (SNC), which has similar goal and structure. We here analyze differences and similarities between the KRP and SNC rigorously. We found, rather surprisingly, that there is a definite gap in security between the KRP and SNC; that is, certain KRPs achieve better security than any SNC schemes on the same graph. We also found that this gap can be closed if we generalize the notion of SNC by adding free public channels; that is, KRPs are equivalent to SNC schemes augmented with free public channels.

Developing technology and changing lifestyles have made online grocery delivery applications an indispensable part of urban life. Since the beginning of the COVID-19 pandemic, the demand for such applications has dramatically increased, creating new competitors that disrupt the market. An increasing level of competition might prompt companies to frequently restructure their marketing and product pricing strategies. Therefore, identifying the change patterns in product prices and sales volumes would provide a competitive advantage for the companies in the marketplace. In this paper, we investigate alternative clustering methodologies to group the products based on the price patterns and sales volumes. We propose a novel distance metric that takes into account how product prices and sales move together rather than calculating the distance using numerical values. We compare our approach with traditional clustering algorithms, which typically rely on generic distance metrics such as Euclidean distance, and image clustering approaches that aim to group data by capturing its visual patterns. We evaluate the performances of different clustering algorithms using our custom evaluation metric as well as Calinski Harabasz and Davies Bouldin indices, which are commonly used internal validity metrics. We conduct our numerical study using a propriety price dataset from an online food and grocery delivery company, and the publicly available Favorita sales dataset. We find that our proposed clustering approach and image clustering both perform well for finding the products with similar price and sales patterns within large datasets.

Computing a maximum independent set (MaxIS) is a fundamental NP-hard problem in graph theory, which has important applications in a wide spectrum of fields. Since graphs in many applications are changing frequently over time, the problem of maintaining a MaxIS over dynamic graphs has attracted increasing attention over the past few years. Due to the intractability of maintaining an exact MaxIS, this paper aims to develop efficient algorithms that can maintain an approximate MaxIS with an accuracy guarantee theoretically. In particular, we propose a framework that maintains a $(\frac{\Delta}{2} + 1)$-approximate MaxIS over dynamic graphs and prove that it achieves a constant approximation ratio in many real-world networks. To the best of our knowledge, this is the first non-trivial approximability result for the dynamic MaxIS problem. Following the framework, we implement an efficient linear-time dynamic algorithm and a more effective dynamic algorithm with near-linear expected time complexity. Our thorough experiments over real and synthetic graphs demonstrate the effectiveness and efficiency of the proposed algorithms, especially when the graph is highly dynamic.

We describe a numerical algorithm for approximating the equilibrium-reduced density matrix and the effective (mean force) Hamiltonian for a set of system spins coupled strongly to a set of bath spins when the total system (system+bath) is held in canonical thermal equilibrium by weak coupling with a "super-bath". Our approach is a generalization of now standard typicality algorithms for computing the quantum expectation value of observables of bare quantum systems via trace estimators and Krylov subspace methods. In particular, our algorithm makes use of the fact that the reduced system density, when the bath is measured in a given random state, tends to concentrate about the corresponding thermodynamic averaged reduced system density. Theoretical error analysis and numerical experiments are given to validate the accuracy of our algorithm. Further numerical experiments demonstrate the potential of our approach for applications including the study of quantum phase transitions and entanglement entropy for long-range interaction systems.

Low-rank matrix estimation under heavy-tailed noise is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a novel Riemannian sub-gradient (RsGrad) algorithm which is not only computationally efficient with linear convergence but also is statistically optimal, be the noise Gaussian or heavy-tailed. Convergence theory is established for a general framework and specific applications to absolute loss, Huber loss, and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of dual-phase convergence. In phase one, RsGrad behaves as in a typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator which is already observed in the existing literature. Interestingly, during phase two, RsGrad converges linearly as if minimizing a smooth and strongly convex objective function and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Lastly, RsGrad is applicable for low-rank tensor estimation under heavy-tailed noise where a statistically optimal rate is attainable with the same phenomenon of dual-phase convergence, and a novel shrinkage-based second-order moment method is guaranteed to deliver a warm initialization. Numerical simulations confirm our theoretical discovery and showcase the superiority of RsGrad over prior methods.

A palindromic substring $T[i.. j]$ of a string $T$ is said to be a shortest unique palindromic substring (SUPS) in $T$ for an interval $[p, q]$ if $T[i.. j]$ is a shortest one such that $T[i.. j]$ occurs only once in $T$, and $[i, j]$ contains $[p, q]$. The SUPS problem is, given a string $T$ of length $n$, to construct a data structure that can compute all the SUPSs for any given query interval. It is known that any SUPS query can be answered in $O(\alpha)$ time after $O(n)$-time preprocessing, where $\alpha$ is the number of SUPSs to output [Inoue et al., 2018]. In this paper, we first show that $\alpha$ is at most $4$, and the upper bound is tight. Also, we present an algorithm to solve the SUPS problem for a sliding window that can answer any query in $O(\log\log W)$ time and update data structures in amortized $O(\log\sigma)$ time, where $W$ is the size of the window, and $\sigma$ is the alphabet size. Furthermore, we consider the SUPS problem in the after-edit model and present an efficient algorithm. Namely, we present an algorithm that uses $O(n)$ time for preprocessing and answers any $k$ SUPS queries in $O(\log n\log\log n + k\log\log n)$ time after single character substitution. As a by-product, we propose a fully-dynamic data structure for range minimum queries (RmQs) with a constraint where the width of each query range is limited to polylogarithmic. The constrained RmQ data structure can answer such a query in constant time and support a single-element edit operation in amortized constant time.

We present a novel static analysis technique to derive higher moments for program variables for a large class of probabilistic loops with potentially uncountable state spaces. Our approach is fully automatic, meaning it does not rely on externally provided invariants or templates. We employ algebraic techniques based on linear recurrences and introduce program transformations to simplify probabilistic programs while preserving their statistical properties. We develop power reduction techniques to further simplify the polynomial arithmetic of probabilistic programs and define the theory of moment-computable probabilistic loops for which higher moments can precisely be computed. Our work has applications towards recovering probability distributions of random variables and computing tail probabilities. The empirical evaluation of our results demonstrates the applicability of our work on many challenging examples.

Many scientific problems require to process data in the form of geometric graphs. Unlike generic graph data, geometric graphs exhibit symmetries of translations, rotations, and/or reflections. Researchers have leveraged such inductive bias and developed geometrically equivariant Graph Neural Networks (GNNs) to better characterize the geometry and topology of geometric graphs. Despite fruitful achievements, it still lacks a survey to depict how equivariant GNNs are progressed, which in turn hinders the further development of equivariant GNNs. To this end, based on the necessary but concise mathematical preliminaries, we analyze and classify existing methods into three groups regarding how the message passing and aggregation in GNNs are represented. We also summarize the benchmarks as well as the related datasets to facilitate later researches for methodology development and experimental evaluation. The prospect for future potential directions is also provided.

北京阿比特科技有限公司