亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Extreme quantile regression provides estimates of conditional quantiles outside the range of the data. Classical quantile regression performs poorly in such cases since data in the tail region are too scarce. Extreme value theory is used for extrapolation beyond the range of observed values and estimation of conditional extreme quantiles. Based on the peaks-over-threshold approach, the conditional distribution above a high threshold is approximated by a generalized Pareto distribution with covariate dependent parameters. We propose a gradient boosting procedure to estimate a conditional generalized Pareto distribution by minimizing its deviance. Cross-validation is used for the choice of tuning parameters such as the number of trees and the tree depths. We discuss diagnostic plots such as variable importance and partial dependence plots, which help to interpret the fitted models. In simulation studies we show that our gradient boosting procedure outperforms classical methods from quantile regression and extreme value theory, especially for high-dimensional predictor spaces and complex parameter response surfaces. An application to statistical post-processing of weather forecasts with precipitation data in the Netherlands is proposed.

相關內容

Estimating the gradients of stochastic nodes is one of the crucial research questions in the deep generative modeling community, which enables the gradient descent optimization on neural network parameters. This estimation problem becomes further complex when we regard the stochastic nodes to be discrete because pathwise derivative techniques cannot be applied. Hence, the stochastic gradient estimation of discrete distributions requires either a score function method or continuous relaxation of the discrete random variables. This paper proposes a general version of the Gumbel-Softmax estimator with continuous relaxation, and this estimator is able to relax the discreteness of probability distributions including more diverse types, other than categorical and Bernoulli. In detail, we utilize the truncation of discrete random variables and the Gumbel-Softmax trick with a linear transformation for the relaxed reparameterization. The proposed approach enables the relaxed discrete random variable to be reparameterized and to backpropagated through a large scale stochastic computational graph. Our experiments consist of (1) synthetic data analyses, which show the efficacy of our methods; and (2) applications on VAE and topic model, which demonstrate the value of the proposed estimation in practices.

Data used for analytics and machine learning often take the form of tables with categorical entries. We introduce a family of lossless compression algorithms for such data that proceed in four steps: $(i)$ Estimate latent variables associated to rows and columns; $(ii)$ Partition the table in blocks according to the row/column latents; $(iii)$ Apply a sequential (e.g. Lempel-Ziv) coder to each of the blocks; $(iv)$ Append a compressed encoding of the latents. We evaluate it on several benchmark datasets, and study optimal compression in a probabilistic model for that tabular data, whereby latent values are independent and table entries are conditionally independent given the latent values. We prove that the model has a well defined entropy rate and satisfies an asymptotic equipartition property. We also prove that classical compression schemes such as Lempel-Ziv and finite-state encoders do not achieve this rate. On the other hand, the latent estimation strategy outlined above achieves the optimal rate.

We present a methodology for using unlabeled data to design semi supervised learning (SSL) methods that improve the prediction performance of supervised learning for regression tasks. The main idea is to design different mechanisms for integrating the unlabeled data, and include in each of them a mixing parameter $\alpha$, controlling the weight given to the unlabeled data. Focusing on Generalized-Linear-Models (GLM), we analyze the characteristics of different mixing mechanisms, and prove that in all cases, it is inevitably beneficial to integrate the unlabeled data with some non-zero mixing ratio $\alpha>0$, in terms of predictive performance. Moreover, we provide a rigorous framework for estimating the best mixing ratio $\alpha^*$ where mixed-SSL delivers the best predictive performance, while using the labeled and the unlabeled data on hand. The effectiveness of our methodology in delivering substantial improvement compared to the standard supervised models, under a variety of settings, is demonstrated empirically through extensive simulation, in a manner that supports the theoretical analysis. We also demonstrate the applicability of our methodology (with some intuitive modifications) in improving more complex models such as deep neural networks, in a real-world regression tasks.

Even when the causal graph underlying our data is unknown, we can use observational data to narrow down the possible values that an average treatment effect (ATE) can take by (1) identifying the graph up to a Markov equivalence class; and (2) estimating that ATE for each graph in the class. While the PC algorithm can identify this class under strong faithfulness assumptions, it can be computationally prohibitive. Fortunately, only the local graph structure around the treatment is required to identify the set of possible ATE values, a fact exploited by local discovery algorithms to improve computational efficiency. In this paper, we introduce Local Discovery using Eager Collider Checks (LDECC), a new local causal discovery algorithm that leverages unshielded colliders to orient the treatment's parents differently from existing methods. We show that there exist graphs where LDECC exponentially outperforms existing local discovery algorithms and vice versa. Moreover, we show that LDECC and existing algorithms rely on different faithfulness assumptions, leveraging this insight to weaken the assumptions for identifying the set of possible ATE values.

Bayesian methods are a popular choice for statistical inference in small-data regimes due to the regularization effect induced by the prior. In the context of density estimation, the standard nonparametric Bayesian approach is to target the posterior predictive of the Dirichlet process mixture model. In general, direct estimation of the posterior predictive is intractable and so methods typically resort to approximating the posterior distribution as an intermediate step. The recent development of quasi-Bayesian predictive copula updates, however, has made it possible to perform tractable predictive density estimation without the need for posterior approximation. Although these estimators are computationally appealing, they tend to struggle on non-smooth data distributions. This is due to the comparatively restrictive form of the likelihood models from which the proposed copula updates were derived. To address this shortcoming, we consider a Bayesian nonparametric model with an autoregressive likelihood decomposition and a Gaussian process prior. While the predictive update of such a model is typically intractable, we derive a quasi-Bayesian predictive update that achieves state-of-the-art results in small-data regimes.

In this work, we consider the problem of imbalanced data in a regression framework when the imbalanced phenomenon concerns continuous or discrete covariates. Such a situation can lead to biases in the estimates. In this case, we propose a data augmentation algorithm that combines a weighted resampling (WR) and a data augmentation (DA) procedure. In a first step, the DA procedure permits exploring a wider support than the initial one. In a second step, the WR method drives the exogenous distribution to a target one. We discuss the choice of the DA procedure through a numerical study that illustrates the advantages of this approach. Finally, an actuarial application is studied.

Logistic regression is a commonly used building block in ecological modeling, but its additive structure among environmental predictors often assumes compensatory relationships between predictors, which can lead to problematic results. In reality, the distribution of species is often determined by the least-favored factor, according to von Liebig's Law of the Minimum, which is not addressed in modeling. To address this issue, we introduced the min-linear logistic regression model, which has a built-in minimum structure of competing factors. In our empirical analysis of the distribution of Asiatic black bears ($\textit{Ursus thibetanus}$), we found that the min-linear model performs well compared to other methods and has several advantages. By using the model, we were able to identify ecologically meaningful limiting factors on bear distribution across the survey area. The model's inherent simplicity and interpretability make it a promising tool for extending into other widely used ecological models.

Batch active learning is a popular approach for efficiently training machine learning models on large, initially unlabelled datasets, which repeatedly acquires labels for a batch of data points. However, many recent batch active learning methods are white-box approaches limited to differentiable parametric models: they score unlabeled points using acquisition functions based on model embeddings or first- and second-order derivatives. In this paper, we propose black-box batch active learning for regression tasks as an extension of white-box approaches. This approach is compatible with a wide range of machine learning models including regular and Bayesian deep learning models and non-differentiable models such as random forests. It is rooted in Bayesian principles and utilizes recent kernel-based approaches. Importantly, our method only relies on model predictions. This allows us to extend a wide range of existing state-of-the-art white-box batch active learning methods (BADGE, BAIT, LCMD) to black-box models. We demonstrate the effectiveness of our approach through extensive experimental evaluations on regression datasets, achieving surprisingly strong performance compared to white-box approaches for deep learning models.

Let $(x_{i}, y_{i})_{i=1,\dots,n}$ denote independent samples from a general mixture distribution $\sum_{c\in\mathcal{C}}\rho_{c}P_{c}^{x}$, and consider the hypothesis class of generalized linear models $\hat{y} = F(\Theta^{\top}x)$. In this work, we investigate the asymptotic joint statistics of the family of generalized linear estimators $(\Theta_{1}, \dots, \Theta_{M})$ obtained either from (a) minimizing an empirical risk $\hat{R}_{n}(\Theta;X,y)$ or (b) sampling from the associated Gibbs measure $\exp(-\beta n \hat{R}_{n}(\Theta;X,y))$. Our main contribution is to characterize under which conditions the asymptotic joint statistics of this family depends (on a weak sense) only on the means and covariances of the class conditional features distribution $P_{c}^{x}$. In particular, this allow us to prove the universality of different quantities of interest, such as the training and generalization errors, redeeming a recent line of work in high-dimensional statistics working under the Gaussian mixture hypothesis. Finally, we discuss the applications of our results to different machine learning tasks of interest, such as ensembling and uncertainty

Forward gradient learning computes a noisy directional gradient and is a biologically plausible alternative to backprop for learning deep neural networks. However, the standard forward gradient algorithm, when applied naively, suffers from high variance when the number of parameters to be learned is large. In this paper, we propose a series of architectural and algorithmic modifications that together make forward gradient learning practical for standard deep learning benchmark tasks. We show that it is possible to substantially reduce the variance of the forward gradient estimator by applying perturbations to activations rather than weights. We further improve the scalability of forward gradient by introducing a large number of local greedy loss functions, each of which involves only a small number of learnable parameters, and a new MLPMixer-inspired architecture, LocalMixer, that is more suitable for local learning. Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.

北京阿比特科技有限公司