亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Today, data analysis drives the decision-making process in virtually every human activity. This demands for software platforms that offer simple programming abstractions to express data analysis tasks and that can execute them in an efficient and scalable way. State-of-the-art solutions range from low-level programming primitives, which give control to the developer about communication and resource usage, but require significant effort to develop and optimize new algorithms, to high-level platforms that hide most of the complexities of parallel and distributed processing, but often at the cost of reduced efficiency. To reconcile these requirements, we developed Noir, a novel distributed data processing platform written in Rust. Noir provides a high-level dataflow programming model as mainstream data processing systems. It supports static and streaming data, it enables data transformations, grouping, aggregation, iterative computations, and time-based analytics, incurring in a low overhead. This paper presents In this paper, we present the programming model and the implementation details of Noir. We evaluate it under heterogeneous workloads. We compare it with state-of-the-art solutions for data analysis and high-performance computing, as well as alternative research products, which offer different programming abstractions and implementation strategies. Noir programs are compact and easy to write: developers need not care about low-level concerns such as resource usage, data serialization, concurrency control, and communication. Noir consistently presents comparable or better performance than competing solutions, by a large margin in several scenarios. We conclude that Noir offers a good tradeoff between simplicity and performance, allowing developers to easily express complex data analysis tasks and achieve high performance and scalability.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

This paper proposes the Doubly Compressed Momentum-assisted stochastic gradient tracking algorithm $\texttt{DoCoM}$ for communication-efficient decentralized optimization. The algorithm features two main ingredients to achieve a near-optimal sample complexity while allowing for communication compression. First, the algorithm tracks both the averaged iterate and stochastic gradient using compressed gossiping consensus. Second, a momentum step is incorporated for adaptive variance reduction with the local gradient estimates. We show that $\texttt{DoCoM}$ finds a near-stationary solution at all participating agents satisfying $\mathbb{E}[ \| \nabla f( \theta ) \|^2 ] = \mathcal{O}( 1 / T^{2/3} )$ in $T$ iterations, where $f(\theta)$ is a smooth (possibly non-convex) objective function. Notice that the proof is achieved via analytically designing a new potential function that tightly tracks the one-iteration progress of $\texttt{DoCoM}$. As a corollary, our analysis also established the linear convergence of $\texttt{DoCoM}$ to a global optimal solution for objective functions with the Polyak-{\L}ojasiewicz condition. Numerical experiments demonstrate that our algorithm outperforms several state-of-the-art algorithms in practice.

Clinical trials are vital in advancing drug development and evidence-based medicine, but their success is often hindered by challenges in patient recruitment. In this work, we investigate the potential of large language models (LLMs) to assist individual patients and referral physicians in identifying suitable clinical trials from an extensive selection. Specifically, we introduce TrialGPT, a novel architecture employing LLMs to predict criterion-level eligibility with detailed explanations, which are then aggregated for ranking and excluding candidate clinical trials based on free-text patient notes. We evaluate TrialGPT on three publicly available cohorts of 184 patients and 18,238 annotated clinical trials. The experimental results demonstrate several key findings: First, TrialGPT achieves high criterion-level prediction accuracy with faithful explanations. Second, the aggregated trial-level TrialGPT scores are highly correlated with expert eligibility annotations. Third, these scores prove effective in ranking clinical trials and exclude ineligible candidates. Our error analysis suggests that current LLMs still make some mistakes due to limited medical knowledge and domain-specific context understanding. Nonetheless, we believe the explanatory capabilities of LLMs are highly valuable. Future research is warranted on how such AI assistants can be integrated into the routine trial matching workflow in real-world settings to improve its efficiency.

Learned cardinality estimation methods have achieved high precision compared to traditional methods. Among learned methods, query-driven approaches face the data and workload drift problem for a long time. Although both query-driven and hybrid methods are proposed to avoid this problem, even the state-of-the-art of them suffer from high training and estimation costs, limited scalability, instability, and long-tailed distribution problem on high cardinality and high-dimensional tables, which seriously affects the practical application of learned cardinality estimators. In this paper, we prove that most of these problems are directly caused by the widely used progressive sampling. We solve this problem by introducing predicates information into the autoregressive model and propose Duet, a stable, efficient, and scalable hybrid method to estimate cardinality directly without sampling or any non-differentiable process, which can not only reduces the inference complexity from O(n) to O(1) compared to Naru and UAE but also achieve higher accuracy on high cardinality and high-dimensional tables. Experimental results show that Duet can achieve all the design goals above and be much more practical and even has a lower inference cost on CPU than that of most learned methods on GPU.

This study compares the performance of a causal and a predictive model in modeling travel mode choice in three neighborhoods in Chicago. A causal discovery algorithm and a causal inference technique were used to extract the causal relationships in the mode choice decision making process and to estimate the quantitative causal effects between the variables both directly from observational data. The model results reveal that trip distance and vehicle ownership are the direct causes of mode choice in the three neighborhoods. Artificial neural network models were estimated to predict mode choice. Their accuracy was over 70%, and the SHAP values obtained measure the importance of each variable. We find that both the causal and predictive modeling approaches are useful for the purpose they serve. We also note that the study of mode choice behavior through causal modeling is mostly unexplored, yet it could transform our understanding of the mode choice behavior. Further research is needed to realize the full potential of these techniques in modeling mode choice.

We study a class of nonlinear nonlocal conservation laws with discontinuous flux, modeling crowd dynamics and traffic flow, without any additional conditions on finiteness/discreteness of the set of discontinuities or on the monotonicity of the kernel/the discontinuous coefficient. Strong compactness of the Godunov and Lax-Friedrichs type approximations is proved, providing the existence of entropy solutions. A proof of the uniqueness of the adapted entropy solutions is provided, establishing the convergence of the entire sequence of finite volume approximations to the adapted entropy solution. As per the current literature, this is the first well-posedness result for the aforesaid class and connects the theory of nonlocal conservation laws (with discontinuous flux), with its local counterpart in a generic setup. Some numerical examples are presented to display the performance of the schemes and explore the limiting behavior of these nonlocal conservation laws to their local counterparts.

Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios.

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司