亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent years have seen a surge of interest in anomaly detection for tackling industrial defect detection, event detection, etc. However, existing unsupervised anomaly detectors, particularly those for the vision modality, face significant challenges due to redundant information and sparse latent space. Conversely, the language modality performs well due to its relatively single data. This paper tackles the aforementioned challenges for vision modality from a multimodal point of view. Specifically, we propose Cross-modal Guidance (CMG), which consists of Cross-modal Entropy Reduction (CMER) and Cross-modal Linear Embedding (CMLE), to tackle the redundant information issue and sparse space issue, respectively. CMER masks parts of the raw image and computes the matching score with the text. Then, CMER discards irrelevant pixels to make the detector focus on critical contents. To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality, and then the latent space of vision modality will be learned with the guidance of the matrix. Thereafter, the vision latent space will get semantically similar images closer. Extensive experiments demonstrate the effectiveness of the proposed methods. Particularly, CMG outperforms the baseline that only uses images by 16.81%. Ablation experiments further confirm the synergy among the proposed methods, as each component depends on the other to achieve optimal performance.

相關內容

Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.

In many applied fields it is desired to make predictions with the aim of assessing the plausibility of more severe events than those already recorded to safeguard against calamities that have not yet occurred. This problem can be analysed using extreme value theory. We consider the popular peaks over a threshold method and show that the generalised Pareto approximation of the true predictive densities of both a future unobservable excess or peak random variable can be very accurate. We propose both a frequentist and a Bayesian approach for the estimation of such predictive densities. We show the asymptotic accuracy of the corresponding estimators and, more importantly, prove that the resulting predictive inference is asymptotically reliable. We show the utility of the proposed predictive tools analysing extreme temperatures in Milan in Italy.

State transformation problems such as compressing quantum information or breaking quantum commitments are fundamental quantum tasks. However, their computational difficulty cannot easily be characterized using traditional complexity theory, which focuses on tasks with classical inputs and outputs. To study the complexity of such state transformation tasks, we introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes. We use this framework to study the complexity of transforming one entangled state into another via local operations. We formalize this as the Uhlmann Transformation Problem, an algorithmic version of Uhlmann's theorem. Then, we prove structural results relating the complexity of the Uhlmann Transformation Problem, polynomial space quantum computation, and zero knowledge protocols. The Uhlmann Transformation Problem allows us to characterize the complexity of a variety of tasks in quantum information processing, including decoding noisy quantum channels, breaking falsifiable quantum cryptographic assumptions, implementing optimal prover strategies in quantum interactive proofs, and decoding the Hawking radiation of black holes. Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.

Quantum programs are notoriously difficult to code and verify due to unintuitive quantum knowledge associated with quantum programming. Automated tools relieving the tedium and errors associated with low-level quantum details would hence be highly desirable. In this paper, we initiate the study of program synthesis for quantum unitary programs that recursively define a family of unitary circuits for different input sizes, which are widely used in existing quantum programming languages. Specifically, we present QSynth, the first quantum program synthesis framework, including a new inductive quantum programming language, its specification, a sound logic for reasoning, and an encoding of the reasoning procedure into SMT instances. By leveraging existing SMT solvers, QSynth successfully synthesizes ten quantum unitary programs including quantum adder circuits, quantum eigenvalue inversion circuits and Quantum Fourier Transformation, which can be readily transpiled to executable programs on major quantum platforms, e.g., Q#, IBM Qiskit, and AWS Braket.

Decentralized bilevel optimization has been actively studied in the past few years since it has widespread applications in machine learning. However, existing algorithms suffer from large communication complexity caused by the estimation of stochastic hypergradient, limiting their application to real-world tasks. To address this issue, we develop a novel decentralized stochastic bilevel gradient descent algorithm under the heterogeneous setting, which enjoys a small communication cost in each round and small communication rounds. As such, it can achieve a much better communication complexity than existing algorithms. Moreover, we extend our algorithm to the more challenging decentralized multi-level optimization. To the best of our knowledge, this is the first time achieving these theoretical results under the heterogeneous setting. At last, the experimental results confirm the efficacy of our algorithm.

Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data. The performance of SNNs hinges not only on selecting an apposite architecture and fine-tuning connection weights, similar to conventional ANNs, but also on the meticulous configuration of intrinsic structures within spiking computations. However, there has been a dearth of comprehensive studies examining the impact of intrinsic structures. Consequently, developers often find it challenging to apply a standardized configuration of SNNs across diverse datasets or tasks. This work delves deep into the intrinsic structures of SNNs. Initially, we unveil two pivotal components of intrinsic structures: the integration operation and firing-reset mechanism, by elucidating their influence on the expressivity of SNNs. Furthermore, we draw two key conclusions: the membrane time hyper-parameter is intimately linked to the eigenvalues of the integration operation, dictating the functional topology of spiking dynamics, and various hyper-parameters of the firing-reset mechanism govern the overall firing capacity of an SNN, mitigating the injection ratio or sampling density of input data. These findings elucidate why the efficacy of SNNs hinges heavily on the configuration of intrinsic structures and lead to a recommendation that enhancing the adaptability of these structures contributes to improving the overall performance and applicability of SNNs. Inspired by this recognition, we propose two feasible approaches to enhance SNN learning. These involve leveraging self-connection architectures and employing stochastic spiking neurons to augment the adaptability of the integration operation and firing-reset mechanism, respectively. We verify the effectiveness of the proposed methods from perspectives of theory and practice.

LLMs may interact with users in the form of dialogue and generate responses following their instructions, which naturally require dialogue comprehension abilities. However, dialogue comprehension is a general language ability which is hard to be evaluated directly. In this work, we propose to perform the evaluation with the help of the dialogue summarization task. Beside evaluating and analyzing the dialogue summarization performance (DIAC-Sum) of different LLMs, we also derive factual questions from the generated summaries and use them as a more flexible measurement of dialogue comprehension (DIAC-FactQA). Our evaluation shows that, on average, 27% of the summaries generated by LLMs contain factual inconsistency. Even ChatGPT, the strongest model evaluated, has such errors in 16% of its summaries. For answering the factual questions, which is more challenging, the average error rate of all evaluated LLMs is 37.2%. Both results indicate serious deficiencies. Detailed analysis shows that the understanding of subject/object of the conversation is still the most challenging problem for LLMs. Furthermore, to stimulate and enhance the dialogue comprehension ability of LLMs, we propose a fine-tuning paradigm with auto-constructed multi-task data. The experimental results demonstrate that our method achieved an error rate improvement of 10.9% on DIAC-FactQA.

In most classification models, it has been assumed to have a single ground truth label for each data point. However, subjective tasks like toxicity classification can lead to genuine disagreement among annotators. In these cases aggregating labels will result in biased labeling and, consequently, biased models that can overlook minority opinions. Previous studies have shed light on the pitfalls of label aggregation and have introduced a handful of practical approaches to tackle this issue. Recently proposed multi-annotator models, which predict labels individually per annotator, are vulnerable to under-determination for annotators with small samples. This problem is especially the case in crowd-sourced datasets. In this work, we propose Annotator Aware Representations for Texts (AART) for subjective classification tasks. We will show the improvement of our method on metrics that assess the performance on capturing annotators' perspectives. Additionally, our approach involves learning representations for annotators, allowing for an exploration of the captured annotation behaviors.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司