亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decentralized bilevel optimization has been actively studied in the past few years since it has widespread applications in machine learning. However, existing algorithms suffer from large communication complexity caused by the estimation of stochastic hypergradient, limiting their application to real-world tasks. To address this issue, we develop a novel decentralized stochastic bilevel gradient descent algorithm under the heterogeneous setting, which enjoys a small communication cost in each round and small communication rounds. As such, it can achieve a much better communication complexity than existing algorithms. Moreover, we extend our algorithm to the more challenging decentralized multi-level optimization. To the best of our knowledge, this is the first time achieving these theoretical results under the heterogeneous setting. At last, the experimental results confirm the efficacy of our algorithm.

相關內容

In this paper, we study sampling from a posterior derived from a neural network. We propose a new probabilistic model consisting of adding noise at every pre- and post-activation in the network, arguing that the resulting posterior can be sampled using an efficient Gibbs sampler. For small models, the Gibbs sampler attains similar performances as the state-of-the-art Markov chain Monte Carlo (MCMC) methods, such as the Hamiltonian Monte Carlo (HMC) or the Metropolis adjusted Langevin algorithm (MALA), both on real and synthetic data. By framing our analysis in the teacher-student setting, we introduce a thermalization criterion that allows us to detect when an algorithm, when run on data with synthetic labels, fails to sample from the posterior. The criterion is based on the fact that in the teacher-student setting we can initialize an algorithm directly at equilibrium.

The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.

We propose an automated procedure to prove polyhedral abstractions for Petri nets. Polyhedral abstraction is a new type of state space equivalence, between Petri nets, based on the use of linear integer constraints between the marking of places. In addition to defining an automated proof method, this paper aims to better characterize polyhedral reductions, and to give an overview of their application to reachability problems. Our approach relies on encoding the equivalence problem into a set of SMT formulas whose satisfaction implies that the equivalence holds. The difficulty, in this context, arises from the fact that we need to handle infinite-state systems. For completeness, we exploit a connection with a class of Petri nets, called flat nets, that have Presburger-definable reachability sets. We have implemented our procedure, and we illustrate its use on several examples

We propose a distributional framework for assessing socio-technical risks of foundation models with quantified statistical significance. Our approach hinges on a new statistical relative testing based on first and second order stochastic dominance of real random variables. We show that the second order statistics in this test are linked to mean-risk models commonly used in econometrics and mathematical finance to balance risk and utility when choosing between alternatives. Using this framework, we formally develop a risk-aware approach for foundation model selection given guardrails quantified by specified metrics. Inspired by portfolio optimization and selection theory in mathematical finance, we define a metrics portfolio for each model as a means to aggregate a collection of metrics, and perform model selection based on the stochastic dominance of these portfolios. The statistical significance of our tests is backed theoretically by an asymptotic analysis via central limit theorems instantiated in practice via a bootstrap variance estimate. We use our framework to compare various large language models regarding risks related to drifting from instructions and outputting toxic content.

A Particle Swarm Optimizer for the search of balanced Boolean functions with good cryptographic properties is proposed in this paper. The algorithm is a modified version of the permutation PSO by Hu, Eberhart and Shi which preserves the Hamming weight of the particles positions, coupled with the Hill Climbing method devised by Millan, Clark and Dawson to improve the nonlinearity and deviation from correlation immunity of Boolean functions. The parameters for the PSO velocity equation are tuned by means of two meta-optimization techniques, namely Local Unimodal Sampling (LUS) and Continuous Genetic Algorithms (CGA), finding that CGA produces better results. Using the CGA-evolved parameters, the PSO algorithm is then run on the spaces of Boolean functions from $n=7$ to $n=12$ variables. The results of the experiments are reported, observing that this new PSO algorithm generates Boolean functions featuring similar or better combinations of nonlinearity, correlation immunity and propagation criterion with respect to the ones obtained by other optimization methods.

Transformer-based models have recently become wildly successful across a diverse set of domains. At the same time, recent work has shown that Transformers are inherently low-pass filters that gradually oversmooth the inputs, reducing the expressivity of their representations. A natural question is: How can Transformers achieve these successes given this shortcoming? In this work we show that in fact Transformers are not inherently low-pass filters. Instead, whether Transformers oversmooth or not depends on the eigenspectrum of their update equations. Our analysis extends prior work in oversmoothing and in the closely-related phenomenon of rank collapse. We show that many successful Transformer models have attention and weights which satisfy conditions that avoid oversmoothing. Based on this analysis, we derive a simple way to parameterize the weights of the Transformer update equations that allows for control over its spectrum, ensuring that oversmoothing does not occur. Compared to a recent solution for oversmoothing, our approach improves generalization, even when training with more layers, fewer datapoints, and data that is corrupted.

The lack of an accessible and effective system for blind individuals to create handwritten signatures presents a significant barrier to their independence and full participation in various aspects of life. This research introduces the Tactile Signature System, a groundbreaking approach that empowers individuals with visual impairments to form their unique handwritten signatures. Key features of the system include: Personalized customization: Through tactile interaction and voice algorithmic guidance, individuals create signatures reflecting their preferences and natural writing style. Real-time feedback: AI-powered voice prompts and analysis ensure accuracy and consistency in signature formation. Accessibility: Installation in local service centers provides a secure and supervised environment for signature creation. The system's impact reaches beyond the individual level: Promotes inclusivity and independence: Blind individuals can engage in legal and financial transactions without relying on others. Empowers and fosters equal opportunities: Participation in education, employment, and civic engagement becomes more accessible. Aligns with international conventions: Upholds the right of persons with disabilities to participate fully in society. The Tactile Signature System represents a significant step towards an inclusive and accessible future for individuals with visual impairments.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司