亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many NLP applications require manual data annotations for a variety of tasks, notably to train classifiers or evaluate the performance of unsupervised models. Depending on the size and degree of complexity, the tasks may be conducted by crowd-workers on platforms such as MTurk as well as trained annotators, such as research assistants. Using a sample of 2,382 tweets, we demonstrate that ChatGPT outperforms crowd-workers for several annotation tasks, including relevance, stance, topics, and frames detection. Specifically, the zero-shot accuracy of ChatGPT exceeds that of crowd-workers for four out of five tasks, while ChatGPT's intercoder agreement exceeds that of both crowd-workers and trained annotators for all tasks. Moreover, the per-annotation cost of ChatGPT is less than $0.003 -- about twenty times cheaper than MTurk. These results show the potential of large language models to drastically increase the efficiency of text classification.

相關內容

Large language models like ChatGPT have recently demonstrated impressive capabilities in natural language understanding and generation, enabling various applications including translation, essay writing, and chit-chatting. However, there is a concern that they can be misused for malicious purposes, such as fraud or denial-of-service attacks. Therefore, it is crucial to develop methods for detecting whether the party involved in a conversation is a bot or a human. In this paper, we propose a framework named FLAIR, Finding Large language model Authenticity via a single Inquiry and Response, to detect conversational bots in an online manner. Specifically, we target a single question scenario that can effectively differentiate human users from bots. The questions are divided into two categories: those that are easy for humans but difficult for bots (e.g., counting, substitution, positioning, noise filtering, and ASCII art), and those that are easy for bots but difficult for humans (e.g., memorization and computation). Our approach shows different strengths of these questions in their effectiveness, providing a new way for online service providers to protect themselves against nefarious activities and ensure that they are serving real users. We open-sourced our dataset on //github.com/hongwang600/FLAIR and welcome contributions from the community to enrich such detection datasets.

While natural language processing tools have been developed extensively for some of the world's languages, a significant portion of the world's over 7000 languages are still neglected. One reason for this is that evaluation datasets do not yet cover a wide range of languages, including low-resource and endangered ones. We aim to address this issue by creating a text classification dataset encompassing a large number of languages, many of which currently have little to no annotated data available. We leverage parallel translations of the Bible to construct such a dataset by first developing applicable topics and employing a crowdsourcing tool to collect annotated data. By annotating the English side of the data and projecting the labels onto other languages through aligned verses, we generate text classification datasets for more than 1500 languages. We extensively benchmark several existing multilingual language models using our dataset. To facilitate the advancement of research in this area, we will release our dataset and code.

Compared to news and chat summarization, the development of meeting summarization is hugely decelerated by the limited data. To this end, we introduce a versatile Chinese meeting summarization dataset, dubbed VCSum, consisting of 239 real-life meetings, with a total duration of over 230 hours. We claim our dataset is versatile because we provide the annotations of topic segmentation, headlines, segmentation summaries, overall meeting summaries, and salient sentences for each meeting transcript. As such, the dataset can adapt to various summarization tasks or methods, including segmentation-based summarization, multi-granularity summarization and retrieval-then-generate summarization. Our analysis confirms the effectiveness and robustness of VCSum. We also provide a set of benchmark models regarding different downstream summarization tasks on VCSum to facilitate further research. The dataset and code will be released at //github.com/hahahawu/VCSum.

Traditionally, approximate dynamic programming is employed in dialogue generation with greedy policy improvement through action sampling, as the natural language action space is vast. However, this practice is inefficient for reinforcement learning (RL) due to the sparsity of eligible responses with high action values, which leads to weak improvement sustained by random sampling. This paper presents theoretical analysis and experiments that reveal the performance of the dialogue policy is positively correlated with the sampling size. To overcome this limitation, we introduce a novel dual-granularity Q-function that explores the most promising response category to intervene in the sampling process. Our approach extracts actions based on a grained hierarchy, thereby achieving the optimum with fewer policy iterations. Additionally, we use offline RL and learn from multiple reward functions designed to capture emotional nuances in human interactions. Empirical studies demonstrate that our algorithm outperforms baselines across automatic metrics and human evaluations. Further testing reveals that our algorithm exhibits both explainability and controllability and generates responses with higher expected rewards.

Information retrieval (IR) plays a crucial role in locating relevant resources from vast amounts of data, and its applications have evolved from traditional knowledge bases to modern search engines (SEs). The emergence of large language models (LLMs) has further revolutionized the field by enabling users to interact with search systems in natural language. In this paper, we explore the advantages and disadvantages of LLMs and SEs, highlighting their respective strengths in understanding user-issued queries and retrieving up-to-date information. To leverage the benefits of both paradigms while circumventing their limitations, we propose InteR, a novel framework that facilitates knowledge refinement through interaction between SEs and LLMs. InteR allows SEs to refine knowledge in query using LLM-generated summaries and enables LLMs to enhance prompts using SE-retrieved documents. This iterative refinement process augments the inputs of SEs and LLMs, leading to more accurate retrieval. Experimental evaluations on two large-scale retrieval benchmarks demonstrate that InteR achieves superior zero-shot document retrieval performance compared to state-of-the-art methods, regardless of the use of relevance judgement.

Most current audio-visual emotion recognition models lack the flexibility needed for deployment in practical applications. We envision a multimodal system that works even when only one modality is available and can be implemented interchangeably for either predicting emotional attributes or recognizing categorical emotions. Achieving such flexibility in a multimodal emotion recognition system is difficult due to the inherent challenges in accurately interpreting and integrating varied data sources. It is also a challenge to robustly handle missing or partial information while allowing direct switch between regression and classification tasks. This study proposes a \emph{versatile audio-visual learning} (VAVL) framework for handling unimodal and multimodal systems for emotion regression and emotion classification tasks. We implement an audio-visual framework that can be trained even when audio and visual paired data is not available for part of the training set (i.e., audio only or only video is present). We achieve this effective representation learning with audio-visual shared layers, residual connections over shared layers, and a unimodal reconstruction task. Our experimental results reveal that our architecture significantly outperforms strong baselines on both the CREMA-D and MSP-IMPROV corpora. Notably, VAVL attains a new state-of-the-art performance in the emotional attribute prediction task on the MSP-IMPROV corpus. Code available at: //github.com/ilucasgoncalves/VAVL

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司