亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Information retrieval (IR) plays a crucial role in locating relevant resources from vast amounts of data, and its applications have evolved from traditional knowledge bases to modern search engines (SEs). The emergence of large language models (LLMs) has further revolutionized the field by enabling users to interact with search systems in natural language. In this paper, we explore the advantages and disadvantages of LLMs and SEs, highlighting their respective strengths in understanding user-issued queries and retrieving up-to-date information. To leverage the benefits of both paradigms while circumventing their limitations, we propose InteR, a novel framework that facilitates knowledge refinement through interaction between SEs and LLMs. InteR allows SEs to refine knowledge in query using LLM-generated summaries and enables LLMs to enhance prompts using SE-retrieved documents. This iterative refinement process augments the inputs of SEs and LLMs, leading to more accurate retrieval. Experimental evaluations on two large-scale retrieval benchmarks demonstrate that InteR achieves superior zero-shot document retrieval performance compared to state-of-the-art methods, regardless of the use of relevance judgement.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 語言模型化 · MoDELS · 邊界框 · Performer ·
2023 年 6 月 26 日

We introduce Kosmos-2, a Multimodal Large Language Model (MLLM), enabling new capabilities of perceiving object descriptions (e.g., bounding boxes) and grounding text to the visual world. Specifically, we represent refer expressions as links in Markdown, i.e., ``[text span](bounding boxes)'', where object descriptions are sequences of location tokens. Together with multimodal corpora, we construct large-scale data of grounded image-text pairs (called GrIT) to train the model. In addition to the existing capabilities of MLLMs (e.g., perceiving general modalities, following instructions, and performing in-context learning), Kosmos-2 integrates the grounding capability into downstream applications. We evaluate Kosmos-2 on a wide range of tasks, including (i) multimodal grounding, such as referring expression comprehension, and phrase grounding, (ii) multimodal referring, such as referring expression generation, (iii) perception-language tasks, and (iv) language understanding and generation. This work lays out the foundation for the development of Embodiment AI and sheds light on the big convergence of language, multimodal perception, action, and world modeling, which is a key step toward artificial general intelligence. Data, demo, and pretrained models are available at //aka.ms/kosmos-2.

Using large language models (LLMs) for source code has recently gained attention. LLMs, such as Transformer-based models like Codex and ChatGPT, have been shown to be highly capable of solving a wide range of programming problems. However, the extent to which LLMs understand problem descriptions and generate programs accordingly or just retrieve source code from the most relevant problem in training data based on superficial cues has not been discovered yet. To explore this research question, we conduct experiments to understand the robustness of several popular LLMs, CodeGen and GPT-3.5 series models, capable of tackling code generation tasks in introductory programming problems. Our experimental results show that CodeGen and Codex are sensitive to the superficial modifications of problem descriptions and significantly impact code generation performance. Furthermore, we observe that Codex relies on variable names, as randomized variables decrease the solved rate significantly. However, the state-of-the-art (SOTA) models, such as InstructGPT and ChatGPT, show higher robustness to superficial modifications and have an outstanding capability for solving programming problems. This highlights the fact that slight modifications to the prompts given to the LLMs can greatly affect code generation performance, and careful formatting of prompts is essential for high-quality code generation, while the SOTA models are becoming more robust to perturbations.

Recommender systems play a vital role in various online services. However, the insulated nature of training and deploying separately within a specific domain limits their access to open-world knowledge. Recently, the emergence of large language models (LLMs) has shown promise in bridging this gap by encoding extensive world knowledge and demonstrating reasoning capability. Nevertheless, previous attempts to directly use LLMs as recommenders have not achieved satisfactory results. In this work, we propose an Open-World Knowledge Augmented Recommendation Framework with Large Language Models, dubbed KAR, to acquire two types of external knowledge from LLMs -- the reasoning knowledge on user preferences and the factual knowledge on items. We introduce factorization prompting to elicit accurate reasoning on user preferences. The generated reasoning and factual knowledge are effectively transformed and condensed into augmented vectors by a hybrid-expert adaptor in order to be compatible with the recommendation task. The obtained vectors can then be directly used to enhance the performance of any recommendation model. We also ensure efficient inference by preprocessing and prestoring the knowledge from the LLM. Extensive experiments show that KAR significantly outperforms the state-of-the-art baselines and is compatible with a wide range of recommendation algorithms.

Recently, computer scientists have developed large language models (LLMs) by training prediction models with large-scale language corpora and human reinforcements. The LLMs have become one promising way to implement artificial intelligence with accuracy in various fields. Interestingly, recent LLMs possess emergent functional features that emulate sophisticated human cognition, especially in-context learning and the chain of thought, which were unavailable in previous prediction models. In this paper, I will examine how LLMs might contribute to moral education and development research. To achieve this goal, I will review the most recently published conference papers and ArXiv preprints to overview the novel functional features implemented in LLMs. I also intend to conduct brief experiments with ChatGPT to investigate how LLMs behave while addressing ethical dilemmas and external feedback. The results suggest that LLMs might be capable of solving dilemmas based on reasoning and revising their reasoning process with external input. I will discuss the potential implications of LLMs on research on moral education and development with the results.

This paper presents a comprehensive exploration of leveraging Large Language Models (LLMs), specifically GPT-4, in the field of instructional design. With a focus on scaling evidence-based instructional design expertise, our research aims to bridge the gap between theoretical educational studies and practical implementation. We discuss the benefits and limitations of AI-driven content generation, emphasizing the necessity of human oversight in ensuring the quality of educational materials. This work is elucidated through two detailed case studies where we applied GPT-4 in creating complex higher-order assessments and active learning components for different courses. From our experiences, we provide best practices for effectively using LLMs in instructional design tasks, such as utilizing templates, fine-tuning, handling unexpected output, implementing LLM chains, citing references, evaluating output, creating rubrics, grading, and generating distractors. We also share our vision of a future recommendation system, where a customized GPT-4 extracts instructional design principles from educational studies and creates personalized, evidence-supported strategies for users' unique educational contexts. Our research contributes to understanding and optimally harnessing the potential of AI-driven language models in enhancing educational outcomes.

We study object interaction anticipation in egocentric videos. This task requires an understanding of the spatiotemporal context formed by past actions on objects, coined action context. We propose TransFusion, a multimodal transformer-based architecture. It exploits the representational power of language by summarising the action context. TransFusion leverages pre-trained image captioning and vision-language models to extract the action context from past video frames. This action context together with the next video frame is processed by the multimodal fusion module to forecast the next object interaction. Our model enables more efficient end-to-end learning. The large pre-trained language models add common sense and a generalisation capability. Experiments on Ego4D and EPIC-KITCHENS-100 show the effectiveness of our multimodal fusion model. They also highlight the benefits of using language-based context summaries in a task where vision seems to suffice. Our method outperforms state-of-the-art approaches by 40.4% in relative terms in overall mAP on the Ego4D test set. We validate the effectiveness of TransFusion via experiments on EPIC-KITCHENS-100. Video and code are available at //eth-ait.github.io/transfusion-proj/.

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

北京阿比特科技有限公司