亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine translation has wide applications in daily life. In mission-critical applications such as translating official documents, incorrect translation can have unpleasant or sometimes catastrophic consequences. This motivates recent research on testing methodologies for machine translation systems. Existing methodologies mostly rely on metamorphic relations designed at the textual level (e.g., Levenshtein distance) or syntactic level (e.g., the distance between grammar structures) to determine the correctness of translation results. However, these metamorphic relations do not consider whether the original and translated sentences have the same meaning (i.e., Semantic similarity). Therefore, in this paper, we propose SemMT, an automatic testing approach for machine translation systems based on semantic similarity checking. SemMT applies round-trip translation and measures the semantic similarity between the original and translated sentences. Our insight is that the semantics expressed by the logic and numeric constraint in sentences can be captured using regular expressions (or deterministic finite automata) where efficient equivalence/similarity checking algorithms are available. Leveraging the insight, we propose three semantic similarity metrics and implement them in SemMT. The experiment result reveals SemMT can achieve higher effectiveness compared with state-of-the-art works, achieving an increase of 21% and 23% on accuracy and F-Score, respectively. We also explore potential improvements that can be achieved when proper combinations of metrics are adopted. Finally, we discuss a solution to locate the suspicious trip in round-trip translation, which may shed lights on further exploration.

相關內容

機器翻譯(Machine Translation)涵蓋計算語言學和語言工程的所有分支,包含多語言方面。特色論文涵蓋理論,描述或計算方面的任何下列主題:雙語和多語語料庫的編寫和使用,計算機輔助語言教學,非羅馬字符集的計算含義,連接主義翻譯方法,對比語言學等。 官網地址:

Testing is a significant aspect of software development. As systems become complex and their use becomes critical to the security and the function of society, the need for testing methodologies that ensure reliability and detect faults as early as possible becomes critical. The most promising approach is the model-based approach where a model is developed that defines how the system is expected to behave and how it is meant to react. The tests are derived from the model and an analysis of the test results is conducted based on it. We will investigate the prospects of using the Behavioral Programming (BP) for a model-based testing (MBT) approach that we will develop. We will develop a natural language for representing the requirements. The model will be fed to algorithms that we will develop. This includes algorithms for the automatic creation of minimal sets of test cases that cover all of the system's requirements, analysing the results of the tests, and other tools that support the testing process. The focus of our methodology will be to find faults caused by the interaction between different requirements in ways that are difficult for the testers to detect. Specifically, we will focus our attention to concurrency issues such as deadlocks and logical race condition. We will use a variety of methods that are made possible by BP, such as non-deterministic execution of scenarios and use of in-code model-checking for building test scenarios and for finding minimal coverage of the test scenarios for the system requirements using Combinatorial Test Design (CTD) methodologies. We will develop a proof-of-concept tool kit which will allow us to demonstrate and evaluate the above mentioned capabilities. We will compare the performance of our tools with the performance of manual testers and of other model-based tools using comparison criteria that we will define and develop.

Machine translation systems achieve near human-level performance on some languages, yet their effectiveness strongly relies on the availability of large amounts of parallel sentences, which hinders their applicability to the majority of language pairs. This work investigates how to learn to translate when having access to only large monolingual corpora in each language. We propose two model variants, a neural and a phrase-based model. Both versions leverage a careful initialization of the parameters, the denoising effect of language models and automatic generation of parallel data by iterative back-translation. These models are significantly better than methods from the literature, while being simpler and having fewer hyper-parameters. On the widely used WMT'14 English-French and WMT'16 German-English benchmarks, our models respectively obtain 28.1 and 25.2 BLEU points without using a single parallel sentence, outperforming the state of the art by more than 11 BLEU points. On low-resource languages like English-Urdu and English-Romanian, our methods achieve even better results than semi-supervised and supervised approaches leveraging the paucity of available bitexts. Our code for NMT and PBSMT is publicly available.

Machine translation systems require semantic knowledge and grammatical understanding. Neural machine translation (NMT) systems often assume this information is captured by an attention mechanism and a decoder that ensures fluency. Recent work has shown that incorporating explicit syntax alleviates the burden of modeling both types of knowledge. However, requiring parses is expensive and does not explore the question of what syntax a model needs during translation. To address both of these issues we introduce a model that simultaneously translates while inducing dependency trees. In this way, we leverage the benefits of structure while investigating what syntax NMT must induce to maximize performance. We show that our dependency trees are 1. language pair dependent and 2. improve translation quality.

In NMT, words are sometimes dropped from the source or generated repeatedly in the translation. We explore novel strategies to address the coverage problem that change only the attention transformation. Our approach allocates fertilities to source words, used to bound the attention each word can receive. We experiment with various sparse and constrained attention transformations and propose a new one, constrained sparsemax, shown to be differentiable and sparse. Empirical evaluation is provided in three languages pairs.

Neural machine translation requires large amounts of parallel training text to learn a reasonable-quality translation model. This is particularly inconvenient for language pairs for which enough parallel text is not available. In this paper, we use monolingual linguistic resources in the source side to address this challenging problem based on a multi-task learning approach. More specifically, we scaffold the machine translation task on auxiliary tasks including semantic parsing, syntactic parsing, and named-entity recognition. This effectively injects semantic and/or syntactic knowledge into the translation model, which would otherwise require a large amount of training bitext. We empirically evaluate and show the effectiveness of our multi-task learning approach on three translation tasks: English-to-French, English-to-Farsi, and English-to-Vietnamese.

Homographs, words with different meanings but the same surface form, have long caused difficulty for machine translation systems, as it is difficult to select the correct translation based on the context. However, with the advent of neural machine translation (NMT) systems, which can theoretically take into account global sentential context, one may hypothesize that this problem has been alleviated. In this paper, we first provide empirical evidence that existing NMT systems in fact still have significant problems in properly translating ambiguous words. We then proceed to describe methods, inspired by the word sense disambiguation literature, that model the context of the input word with context-aware word embeddings that help to differentiate the word sense be- fore feeding it into the encoder. Experiments on three language pairs demonstrate that such models improve the performance of NMT systems both in terms of BLEU score and in the accuracy of translating homographs.

In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French-to-English and German-to-English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our implementation is released as an open source project.

Recognizing semantically similar sentences or paragraphs across languages is beneficial for many tasks, ranging from cross-lingual information retrieval and plagiarism detection to machine translation. Recently proposed methods for predicting cross-lingual semantic similarity of short texts, however, make use of tools and resources (e.g., machine translation systems, syntactic parsers or named entity recognition) that for many languages (or language pairs) do not exist. In contrast, we propose an unsupervised and a very resource-light approach for measuring semantic similarity between texts in different languages. To operate in the bilingual (or multilingual) space, we project continuous word vectors (i.e., word embeddings) from one language to the vector space of the other language via the linear translation model. We then align words according to the similarity of their vectors in the bilingual embedding space and investigate different unsupervised measures of semantic similarity exploiting bilingual embeddings and word alignments. Requiring only a limited-size set of word translation pairs between the languages, the proposed approach is applicable to virtually any pair of languages for which there exists a sufficiently large corpus, required to learn monolingual word embeddings. Experimental results on three different datasets for measuring semantic textual similarity show that our simple resource-light approach reaches performance close to that of supervised and resource intensive methods, displaying stability across different language pairs. Furthermore, we evaluate the proposed method on two extrinsic tasks, namely extraction of parallel sentences from comparable corpora and cross lingual plagiarism detection, and show that it yields performance comparable to those of complex resource-intensive state-of-the-art models for the respective tasks.

Neural machine translation (NMT) suffers a performance deficiency when a limited vocabulary fails to cover the source or target side adequately, which happens frequently when dealing with morphologically rich languages. To address this problem, previous work focused on adjusting translation granularity or expanding the vocabulary size. However, morphological information is relatively under-considered in NMT architectures, which may further improve translation quality. We propose a novel method, which can not only reduce data sparsity but also model morphology through a simple but effective mechanism. By predicting the stem and suffix separately during decoding, our system achieves an improvement of up to 1.98 BLEU compared with previous work on English to Russian translation. Our method is orthogonal to different NMT architectures and stably gains improvements on various domains.

Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

北京阿比特科技有限公司